Deckard’s Photo Inspector

Back to Blade Runner. I mean, the pandemic is still pandemicking, but maybe this will be a nice distraction while you shelter in place. Because you’re smart, sheltering in place as much as you can, and not injecting disinfectants. And, like so many other technologies in this film, this will take a while to deconstruct, critique, and reimagine.


Doing his detective work, Deckard retrieves a set of snapshots from Leon’s hotel room, and he brings them home with with. Something in the one pictured above catches his eye, and he wants to investigate it in greater detail. He takes the photograph and inserts it in a black device he keeps in his living room.

Note: I’ll try and describe this interaction in text, but it is much easier to conceptualize after viewing it. Owing to copyright restrictions, I cannot upload this length of video with the original audio, so I have added pre-rendered closed captions to it, below. All dialogue in the clip is Deckard.

Deckard does digital forensics, looking for a lead.

He inserts the snapshot into a horizontal slit and turns the machine on. A thin, horizontal orange line glows on the left side of the front panel. A series of seemingly random-length orange lines begin to chase one another in a single-row space that stretches across the remainder of the panel and continue to do so throughout Deckard’s use of it. (Imagine a news ticker, running backwards, where the “headlines” are glowing amber lines.) This seems useless and an absolutely pointless distraction for Deckard, putting high-contrast motion in his peripheral vision, which fights for attention with the actual, interesting content down below.

If this is distracting you from reading, YOU SEE MY POINT.

After a second, the screen reveals a blue grid, behind which the scan of the snapshot appears. He stares at the image in the grid for a moment, and speaks a set of instructions, “Enhance 224 to 176.”

In response, three data points appear overlaying the image at the bottom of the screen. Each has a two-letter label and a four-digit number, e.g. “ZM 0000 NS 0000 EW 0000.” The NS and EW—presumably North-South and East-West coordinates, respectively—immediately update to read, “ZM 0000 NS 0197 EW 0334.” After updating the numbers, the screen displays a crosshairs, which target a single rectangle in the grid.

A new rectangle then zooms in from the edges to match the targeted rectangle, as the ZM number—presumably zoom, or magnification—increases. When the animated rectangle reaches the targeted rectangle, its outline blinks yellow a few times. Then the contents of the rectangle are enlarged to fill the screen, in a series of steps which are punctuated with sounds similar to a mechanical camera aperture. The enlargement is perfectly resolved. The overlay disappears until the next set of spoken commands. The system response between Deckard’s issuing the command and the device’s showing the final enlarged image is about 11 seconds.

Deckard studies the new image for awhile before issuing another command. This time he says, “Enhance.” The image enlarges in similar clacking steps until he tells it, “Stop.”

Other instructions he is heard to give include “move in, pull out, track right, center in, pull back, center, and pan right.” Some include discrete instructions, such as, “Track 45 right” while others are relative commands that the system obeys until told to stop, such as “Go right.”

Using such commands he isolates part of the image that reveals an important clue, and he speaks the instruction, “Give me a hard copy right there.” The machine prints the image, which Deckard uses to help find the replicant pictured.

This image helps lead him to Zhora.

I’d like to point out one bit of sophistication before the critique. Deckard can issue a command with or without a parameter, and the inspector knows what to do. For example, “Track 45 right” and “Track right.” Without the parameter, it will just do the thing repeatedly until told to stop. That helps Deckard issue the same basic command when he knows exactly where he wants to look and when doesn’t know what exactly what he’s looking for. That’s a nice feature of the language design.

But still, asking him to provide step-by-step instructions in this clunky way feels like some high-tech Big Trak. (I tried to find a reference that was as old as the film.) And that’s not all…

Some critiques, as it is

  • Can I go back and mention that amber distracto-light? Because it’s distracting. And pointless. I’m not mad. I’m just disappointed.
  • It sure would be nice if any of the numbers on screen made sense, and had any bearing with the numbers Deckard speaks, at any time during the interaction. For instance, the initial zoom (I checked in Photoshop) is around 304%, which is neither the 224 or 176 that Deckard speaks.
  • It might be that each square has a number, and he simply has to name the two squares at the extents of the zoom he wants, letting the machine find the extents, but where is the labeling? Did he have to memorize an address for each pixel? How does that work at arbitrary levels of zoom?
  • And if he’s memorized it, why show the overlay at all?
  • Why the seizure-inducing flashing in the transition sequences? Sure, I get that lots of technologies have unfortunate effects when constrained by mechanics, but this is digital.
  • Why is the printed picture so unlike the still image where he asks for a hard copy?
  • Gaze at the reflection in Ford’s hazel, hazel eyes, and it’s clear he’s playing Missile Command, rather than paying attention to this interface at all. (OK, that’s the filmmaker’s issue, not a part of the interface, but still, come on.)
The photo inspector: My interface is up HERE, Rick.

How might it be improved for 1982?

So if 1982 Ridley Scott was telling me in post that we couldn’t reshoot Harrison Ford, and we had to make it just work with what we had, here’s what I’d do…

Squash the grid so the cells match the 4:3 ratio of the NTSC screen. Overlay the address of each cell, while highlighting column and row identifiers at the edges. Have the first cell’s outline illuminate as he speaks it, and have the outline expand to encompass the second named cell. Then zoom, removing the cell labels during the transition. When at anything other than full view, display a map across four cells that shows the zoom visually in the context of the whole.

Rendered in glorious 4:3 NTSC dimensions.

With this interface, the structure of the existing conversation makes more sense. When Deckard said, “Enhance 203 to 608” the thing would zoom in on the mirror, and the small map would confirm.

The numbers wouldn’t match up, but it’s pretty obvious from the final cut that Scott didn’t care about that (or, more charitably, ran out of time). Anyway I would be doing this under protest, because I would argue this interaction needs to be fixed in the script.

How might it be improved for 2020?

What’s really nifty about this technology is that it’s not just a photograph. Look close in the scene, and Deckard isn’t just doing CSI Enhance! commands (or, to be less mocking, AI upscaling). He’s using the photo inspector to look around corners and at objects that are reconstructed from the smallest reflections. So we can think of the interaction like he’s controlling a drone through a 3D still life, looking for a lead to help him further the case.

With that in mind, let’s talk about the display.


To redesign it, we have to decide at a foundational level how we think this works, because it will color what the display looks like. Is this all data that’s captured from some crazy 3D camera and available in the image? Or is it being inferred from details in the 2 dimensional image? Let’s call the first the 3D capture, and the second the 3D inference.

If we decide this is a 3-D capture, then all the data that he observes through the machine has the same degree of confidence. If, however, we decide this is a 3D inferrer, Deckard needs to treat the inferred data with more skepticism than the data the camera directly captured. The 3-D inferrer is the harder problem, and raises some issues that we must deal with in modern AI, so let’s just say that’s the way this speculative technology works.

The first thing the display should do it make it clear what is observed and what is inferred. How you do this is partly a matter of visual design and style, but partly a matter of diegetic logic. The first pass would be to render everything in the camera frustum photo-realistically, and then render everything outside of that in a way that signals its confidence level. The comp below illustrates one way this might be done.

Modification of a pair of images found on Evermotion
  • In the comp, Deckard has turned the “drone” from the “actual photo,” seen off to the right, toward the inferred space on the left. The monochrome color treatment provides that first high-confidence signal.
  • In the scene, the primary inference would come from reading the reflections in the disco ball overhead lamp, maybe augmented with plans for the apartment that could be found online, or maybe purchase receipts for appliances, etc. Everything it can reconstruct from the reflection and high-confidence sources has solid black lines, a second-level signal.
  • The smaller knickknacks that are out of the reflection of the disco ball, and implied from other, less reflective surfaces, are rendered without the black lines and blurred. This provides a signal that the algorithm has a very low confidence in its inference.

This is just one (not very visually interesting) way to handle it, but should illustrate that, to be believable, the photo inspector shouldn’t have a single rendering style outside the frustum. It would need something akin to these levels to help Deckard instantly recognize how much he should trust what he’s seeing.

Flat screen or volumetric projection?

Modern CGI loves big volumetric projections. (e.g. it was the central novum of last year’s Fritz winner, Spider-Man: Far From Home.) And it would be a wonderful juxtaposition to see Deckard in a holodeck-like recreation of Leon’s apartment, with all the visual treatments described above.


Also seriously who wants a lamp embedded in a headrest?

…that would kind of spoil the mood of the scene. This isn’t just about Deckard’s finding a clue, we also see a little about who he is and what his life is like. We see the smoky apartment. We see the drab couch. We see the stack of old detective machines. We see the neon lights and annoying advertising lights swinging back and forth across his windows. Immersing him in a big volumetric projection would lose all this atmospheric stuff, and so I’d recommend keeping it either a small contained VP, like we saw in Minority Report, or just keep it a small flat screen.

OK, so we have an idea about how the display would (and shouldn’t) look, let’s move on to talk about the inputs.


To talk about inputs, then, we have to return to a favorite topic of mine, and that is the level of agency we want for the interaction. In short, we need to decide how much work the machine is doing. Is the machine just a manual tool that Deckard has to manipulate to get it to do anything? Or does it actively assist him? Or, lastly, can it even do the job while his attention is on something else—that is, can it act as an agent on his behalf? Sophisticated tools can be a blend of these modes, but for now, let’s look at them individually.

Manual Tool

This is how the photo inspector works in Blade Runner. It can do things, but Deckard has to tell it exactly what to do. But we can still improve it in this mode.

We could give him well-mapped physical controls, like a remote control for this conceptual drone. Flight controls wind up being a recurring topic on this blog (and even came up already in the Blade Runner reviews with the Spinners) so I could go on about how best to do that, but I think that a handheld controller would ruin the feel of this scene, like Deckard was sitting down to play a video game rather than do off-hours detective work.

Special edition made possible by our sponsor, Tom Nook.
(I hope we can pay this loan back.)

Similarly, we could talk about a gestural interface, using some of the synecdochic techniques we’ve seen before in Ghost in the Shell. But again, this would spoil the feel of the scene, having him look more like John Anderton in front of a tiny-TV version of Minority Report’s famous crime scrubber.

One of the things that gives this scene its emotional texture is that Deckard is drinking a glass of whiskey while doing his detective homework. It shows how low he feels. Throwing one back is clearly part of his evening routine, so much a habit that he does it despite being preoccupied about Leon’s case. How can we keep him on the couch, with his hand on the lead crystal whiskey glass, and still investigating the photo? Can he use it to investigate the photo?

Here I recommend a bit of ad-hoc tangible user interface. I first backworlded this for The Star Wars Holiday Special, but I think it could work here, too. Imagine that the photo inspector has a high-resolution camera on it, and the interface allows Deckard to declare any object that he wants as a control object. After the declaration, the camera tracks the object against a surface, using the changes to that object to control the virtual camera.

In the scene, Deckard can declare the whiskey glass as his control object, and the arm of his couch as the control surface. Of course the virtual space he’s in is bigger than the couch arm, but it could work like a mouse and a mousepad. He can just pick it up and set it back down again to extend motion.

This scheme takes into account all movement except vertical lift and drop. This could be a gesture or a spoken command (see below).

Going with this interaction model means Deckard can use the whiskey glass, allowing the scene to keep its texture and feel. He can still drink and get his detective on.

Tipping the virtual drone to the right.

Assistant Tool

Indirect manipulation is helpful for when Deckard doesn’t know what he’s looking for. He can look around, and get close to things to inspect them. But when he knows what he’s looking for, he shouldn’t have to go find it. He should be able to just ask for it, and have the photo inspector show it to him. This requires that we presume some AI. And even though Blade Runner clearly includes General AI, let’s presume that that kind of AI has to be housed in a human-like replicant, and can’t be squeezed into this device. Instead, let’s just extend the capabilities of Narrow AI.

Some of this will be navigational and specific, “Zoom to that mirror in the background,” for instance, or, “Reset the orientation.” Some will more abstract and content-specific, e.g. “Head to the kitchen” or “Get close to that red thing.” If it had gaze detection, he could even indicate a location by looking at it. “Get close to that red thing there,” for example, while looking at the red thing. Given the 3D inferrer nature of this speculative device, he might also want to trace the provenance of an inference, as in, “How do we know this chair is here?” This implies natural language generation as well as understanding.

There’s nothing from stopping him using the same general commands heard in the movie, but I doubt anyone would want to use those when they have commands like this and the object-on-hand controller available.

Ideally Deckard would have some general search capabilities as well, to ask questions and test ideas. “Where were these things purchased?” or subsequently, “Is there video footage from the stores where he purchased them?” or even, “What does that look like to you?” (The correct answer would be, “Well that looks like the mirror from the Arnolfini portrait, Ridley…I mean…Rick*”) It can do pattern recognition and provide as much extra information as it has access to, just like Google Lens or IBM Watson image recognition does.

*Left: The convex mirror in Leon’s 21st century apartment.
Right: The convex mirror in Arnolfini’s 15th century apartment

Finally, he should be able to ask after simple facts to see if the inspector knows or can find it. For example, “How many people are in the scene?”

All of this still requires that Deckard initiate the action, and we can augment it further with a little agentive thinking.

Agentive Tool

To think in terms of agents is to ask, “What can the system do for the user, but not requiring the user’s attention?” (I wrote a book about it if you want to know more.) Here, the AI should be working alongside Deckard. Not just building the inferences and cataloguing observations, but doing anomaly detection on the whole scene as it goes. Some of it is going to be pointless, like “Be aware the butter knife is from IKEA, while the rest of the flatware is Christofle Lagerfeld. Something’s not right, here.” But some of it Deckard will find useful. It would probably be up to Deckard to review summaries and decide which were worth further investigation.

It should also be able to help him with his goals. For example, the police had Zhora’s picture on file. (And her portrait even rotates in the dossier we see at the beginning, so it knows what she looks like in 3D for very sophisticated pattern matching.) The moment the agent—while it was reverse ray tracing the scene and reconstructing the inferred space—detects any faces, it should run the face through a most wanted list, and specifically Deckard’s case files. It shouldn’t wait for him to find it. That again poses some challenges to the script. How do we keep Deckard the hero when the tech can and should have found Zhora seconds after being shown the image? It’s a new challenge for writers, but it’s becoming increasingly important for believability.

Though I’ve never figured out why she has a snake tattoo here (and it seems really important to the plot) but then when Deckard finally meets her, it has disappeared.


Interior. Deckard’s apartment. Night.

Deckard grabs a bottle of whiskey, a glass, and the photo from Leon’s apartment. He sits on his couch, places the photo on the coffee table and says “Photo inspector?” The machine on top of a cluttered end table comes to life. Deckard continues, “Let’s look at this.” He points to the photo. A thin line of light sweeps across the image. The scanned image appears on the screen, pulled in a bit from the edges. A label reads, “Extending scene,” and we see wireframe representations of the apartment outside the frame begin to take shape. A small list of anomolies begins to appear to the left. Deckard pours a few fingers of whiskey into the glass. He takes a drink and says, “Controller,” before putting the glass on the arm of his couch. Small projected graphics appear on the arm facing the inspector. He says, “OK. Anyone hiding? Moving?” The inspector replies, “No and no.” Deckard looks at the screen he says, “Zoom to that arm and pin to the face.” He turns the glass on the couch arm counterclockwise, and the “drone” revolves around to show Leon’s face, with the shadowy parts rendered in blue. He asks, “What’s the confidence?” The inspector replies, “95.” On the side of the screen the inspector overlays Leon’s police profile. Deckard says, “unpin” and lifts his glass to take a drink. He moves from the couch to the floor to stare more intently and places his drink on the coffee table. “New surface,” he says, and turns the glass clockwise. The camera turns and he sees into a bedroom. “How do we have this much inference?” he asks. The inspector replies, “The convex mirror in the hall…” Deckard interrupts, saying, “Wait. Is that a foot? You said no one was hiding.” The inspector replies, “The individual is not hiding. They appear to be sleeping.” Deckard rolls his eyes. He says, “Zoom to the face and pin.” The view zooms to the face, but the camera is level with her chin, making it hard to make out the face. Deckard tips the glass forward and the camera rises up to focus on a blue, wireframed face. Deckard says, “That look like Zhora to you?” The inspector overlays her police file and replies, “63% of it does.” Deckard says, “Why didn’t you say so?” The inspector replies, “My threshold is set to 66%.” Deckard says, “Give me a hard copy right there.” He raises his glass and finishes his drink.

This scene keeps the texture and tone of the original, and camps on the limitations of Narrow AI to let Deckard be the hero. And doesn’t have him programming a virtual Big Trak.


Spinners (flying cars)

So the first Fritzes are now a thing. Before I went off on that awesome tangent, where were we? Oh that’s right. I was reviewing Blade Runner as part of a series on AI in sci-fi. I was just about to get to Spinners. Now vehicles are complicated things as they are, much less when they are navigating proper 3D space. Additionally, the police force is, ostensibly, a public service, which complicates things even further. So this will get lengthy. Still, I think I can get this down to eight or so subtopics.

In the distant future of 2019, flying cars, called “spinners,” are a reality. They’re largely for the wealthy and powerful (including law enforcement). The main protagonist, Deckard, is only ever a passenger in a few over the course of the film. His partner Gaff flies one, though, so we have enough usage to review.

Opening the skies to automobile-like traffic poses challenges, especially when those skies are as full of lightning bolts, ever-present massive flares, distracting building-sized video advertisements, and of course, other spinners.

Piloting controls

To pilot the spinner, Gaff keeps his hands on each handle of a split yoke. Within easy reach of his fingers are a few unlabeled buttons and small lights. Once we see him reach with his right thumb to press one of the buttons, but we don’t see any result, so it’s not clear what these buttons do. It’s nice that they don’t require him to take his hands off the controls. (This might seem like a prescient concept, but WP tells me the first non-horn wheel-mounted controls date back as far back as 1966.)

It is contextualizing to note the mode of agency here. That is, the controls are manual, with no AI offering assistance or acting as an agent. (The AI is in the passenger’s seat, lol fight me.) It appears to be up to Gaff to observe conditions, monitor displays, perform wayfinding, and keep the spinner on track.

Note that we never see what his feet are doing and never see him doing other things with his hands other than putting on a headset before lift-off. There are lots of other controls to the pilot’s left and in the console between seats, but we never see them in use. So, you know, approach with caution. There are a lot of unknowns here.

The Traditional Chinese characters on the window read “No entry,” for citizens outside the spinner, passing by when it is on the ground. (Hat tips for the translation to Mischa Park-Doob and Frank Chung.)

The spinner is more like a VTOL aircraft or helicopter than a spaceship. That is, it is constantly in the presence of planetary gravity and must overcome the constant resistance of air. So the standards I established in the piloting controls post are of only limited use to us here.

So let’s look at how helicopter controls work. The FAA Helicopter Flying Handbook tells us that a pilot has controls for…

  1. The vertical velocity, up or down. (Controlled by the angle of the control stick called the collective. The collective is to the left of the pilot’s hip when they are seated.)
  2. The thrust. (Controlled by the twistgrip on the collective.)
  3. Movement forward, rearward, left, and right. (Controlled with the stick in front of the pilot, called the cyclic.)
  4. Yaw of the vehicle. (Controlled with the pair of antitorque pedals at the pilot’s feet.)

Since we don’t see Gaff when the spinner is moving up and down, let’s presume that the thing he’s gripping is like a Y-shaped cyclic, with lots of little additional controls around the handles. Then, if we presume he has a collective somewhere out of sight to his left and antitorque pedals at his feet, this interface meets modern helicopter standards for control. From the outside, those appear to be well mapped (collective up = helicopter up, cyclic right = helicopter right). Twist for thrust is a little weird, but it’s a standard and certainly learnable, as I recall from my motorcycling days. So let’s say it’s complete and convincing. Is it the best it could be? I’m not enough of an aeronautical engineer (read: not at all) to imagine better options, so let’s move along. I might have more to say if it was agentive.


There are two large screens in the dashboard. The one directly in front of Gaff shows a stylized depiction of the 3D surfaces around him as cyan highlights on a navy blue background. Approaching red shapes describe a pill-shaped tunnel-in-the-sky display. These have been tested since 1981 and found to provide higher tracking performance to ideal paths in manual flight, lower cognitive workload, and enhanced situational awareness. ( So, this is believable and well done. I’m not sure that Gaff could readily use the 3D background to effectively understand the 3D terrain, but it is tertiary, after the real world and the tunnel display.

I have to say that it’s a frustrating anti-trope to run into again, but it must be said: If the spinner knows where the ship should be, and general artificial intelligence exists in this diegesis, why exactly are humans doing the piloting? Shouldn’t the spinner fly itself? But back to the interfaces…

Above the tunnel-in-the-sky display is a cyan 7-segment LED scroll display. In the gif above it displays “MAXIMUM SPEED” and later it provides some wayfinding text. I’m not sure how many different types of information it is meant to cycle through, but it sure would be a pain to wait for vital information to appear, and distracting to have to control it to get to the one you wanted.

There is also a vertical screen in the middle of the console listing cyan labels ALT, VEL, and PTCH. These match to altitude, velocity, and pitch variables, reinforcing the helicopter model. The yellow numbers below these labels change in the scene very slowly, and—remarkably for a four-second interface from 1982—do not appear to change randomly. That’s awesome.

But then, there’s a paragraph of cyan text in the middle of the screen that appears over the course of the scene, letter by letter. This animation calls unnecessary attention to itself. There are also smaller, thin screens in the pilot’s door that also continually scroll that same teeny tiny cyan text. I’m not sure WTF all this text is supposed to be, since it would be horribly distracting to a pilot. There are also a few rows of white LEDs with cylon-eye displays traveling back and forth. They are distracting, but at least they’re regular, and might be habituate-able and act as some sort of ambient display. Anyway, if we were building this thing for real, we’d want to eliminate these.

Lastly, at the bottom of the center screen are some unlabeled bar charts depicting some variables that appear to be wiggling randomly. So, like, only the top fifth of this screen can be lauded. The rest is fuigetry. *sigh* It’s hard to escape.


To help navigate the 3D space, pilots have a number of tools. First, there are windows where you expect windows to be in a car, and there are also glass panels under their feet. The movie doesn’t make a big deal out of it, but it’s clear in the scene where the spinner lifts off from the street level. These transparent panes surround pilots and passengers and allow them to track visual cues for landmarks and to identify collision threats.

It’s reflecting some neon on the street below.

The tunnel-in-the-sky display above is the most obvious wayfinding tool. Somehow Gaff has entered a destination, and the tunnel guides him where it needs to go. Since this entails a safe path through the air, it’s the most important display. Other bits of information (like the ALT, VEL, and PTCH in the center screen) should be oriented around it. This would make them glanceable, allowing Gaff glance to check them and quickly return his eyes to the windshield. In fact, we have to admit that a heads up display would allow Gaff to keep his attention where it needs to be rather than splitting it between the real world and these dashboard displays. Modern vehicle drivers are used to this split attention, and can manage it well enough. But I suspect that a HUD would be better.

It’s also at this point that you begin to wonder if these are the scout ships we see in Close Encounters.

There is also that crawling LED display above the tunnel-in-the-sky screen. In one scene it shows “SECTOR FOUR (4)…QUAD-” (we don’t get to see the end of this phrase) but it implies that one of the bits of information this scroll provides is a reminder of the name of the neighborhood you’re currently in. That really only helps if you’re way off course, and seems too low a fidelity for actual wayfinding assistance, but presuming the tunnel-in-the-sky is helping provide the rest of the wayfinding, this information is of secondary importance.

A special note about takeoff: ENVIRON CTR

The display sequence infamous for appearing in both Alien and Blade Runner happens as Gaff lifts off in a spinner early in the film. White all-cap letters label this blue screen “ENVIRON CTR,” above a grid of square characters. Then two 8-digit sequences “drop” down the center of the square grid: 92886599 | 95654085. Once they drop 3 rows, the background turns red, the grid disappears to be replaced by a big blinking label PURGE. Characters at the bottom read “24556 DR 5”, and don’t change.

After the spinner lifts off the display shows a complex diagram of a circle-within-a-circle, illustrating the increasing elevation from the ground below. The delightful worldbuilding thing about the sequence is that it is inscrutable, and legible only by a trained driver, yet gets full focus on screen. There’s not really enough information about the speculative engineering or functional constraints of the spinner to say why these screens would be necessary or useful. I have a suspicion that a live camera view would be more useful than the circle-within-a-circle view, but gosh, it sure is cool. Here’s the shot from Alien, by the way, for easy comparison.

Since people seem to be all over this one now, let me also interject that Alien is also connected to Firefly, since Mal’s anti-aircraft HUD in the pilot had a Weyland-Yutani logo. Chew on that trivia, Internet.

Intercar communication

Of special note is a scene just before his call to Sebastian’s apartment. Deckard is sitting in his parked vehicle in a call with Bryant. A police spinner glides by and we hear an announcement over his loudspeaker, directed to Deckard’s vehicle saying, “This sector’s closed to ground traffic. What are you doing here?” From inside his vehicle, Deckard looks towards his video phone in the console (we never see if there is video, but he’s looking in that direction rather than out the window) and without touching a thing, responds defensively, “I’m working. What are you doing?” The policeman’s reply comes through the videophone’s speakers, “Arresting you, that’s what I’m doing.”

Note that Deckard did not have to answer the call or even put Bryant on hold. We don’t know what the police officer did on their end, but this interaction implies that the police can make an instant, intrusive audio connection with vehicles it finds suspicious. It’s so seamless it will slip by you if you don’t know to look for it, but it paints quite a picture of intercar communication. Can you imagine if our cars automatically shared an audio space with the cars around it?

External interfaces

Another aspect of the car is that it is an interface not just for the people using the car, but for the citizens observing or near the spinner as it goes about its business. There are a number of features that helps it act as an interface to the public. 

Police exist as a social service, and the 995 repeated around the outside helps remind citizens of the number they can call in case of an emergency. 

Modern patrol cars have beacons and sirens to tell other drivers to get out of the way when they are on urgent business. Police spinners are gravid with beacons, having 12 of them visible from the front alone. (See below.) As the spinner is taking off, yellow and blue beacons circle as a warning. This would be of no help to a blind person nearby, but the vehicle does make some incidental noise that serves as an audible warning.

The rich light strip makes sense because it has such a greater range of movement than ground-based cars, and needs more attention grabbing power. Another nice touch is that, since the spinner can be above people, there are also beacons on the chassis.

Upshot: Spinners do well

So, all in all, the spinner fares quite well on close inspection. It builds on known models of piloting, shows mostly-relevant data, uses known best practices for assistance, and has a lot of well-considered surface features for citizens.

Now if only I could figure out why they’re called spinners.

Video Phone Calls

The characters in Johnny Mnemonic make quite a few video phone calls throughout the film, enough to be grouped in their own section on interfaces.

The first thing a modern viewer will note is that only one of the phones resembles a current day handheld mobile. This looks very strange today and it’s hard to imagine why we would ever give up our beloved iPhones and Androids. I’ll just observe that accurately predicting the future is difficult (and not really the point) and move on.

More interesting is the variety of phones used. In films from the 1950s to the 1990s, everyone uses a desk phone with a handset. (For younger readers: that is the piece you picked up and held next to your ear and mouth. There’s probably one in your parents’ house.) The only changes were the gradual replacement of rotary dials by keypads, and some cordless handsets. In 21st century films everyone uses a small sleek handheld box. But in Johnny Mnemonic every phone call uses a different interface.

New Darwin

First is the phone call Johnny makes from the New Darwin hotel.


As previously discussed, Johnny is lying in bed using a remote control to select numbers on the onscreen keypad. He is facing a large wall mounted TV/display screen, with what looks like a camera at the top. The camera is realistic but unusual: as Chapter 10 of Make It So notes, films very rarely show the cameras used in visual communication. Continue reading

Galactica’s Wayfinding


The Battlestar Galactica is a twisting and interlocking series of large hallways that provide walking access to all parts of the ship.  The hallways are poorly labeled, and are almost impossible for someone without experience to navigate. Seriously, look at these images and see if you can tell where you are, or where you’re supposed to head to find…well, anything.


Billy (a young political assistant steeped in modern technology) finds this out after losing the rest of his tour group.

The hallways lack even the most basic signage that we expect in our commercial towers and office buildings.  We see no indication of what deck a given corridor is on, what bulkhead a certain intersection is located at, or any obvious markings on doorways.

We do see small, cryptic alphanumerics near door handles:


Based off of current day examples, the alphanumeric would mark the bulkhead the door was at, the level it was on, and which section it was in.  This would let anyone who knew the system figure out where they were on the ship. Continue reading

Grabby hologram

After Pepper tosses off the sexy bon mot “Work hard!” and leaves Tony to his Avengers initiative homework, Tony stands before the wall-high translucent displays projected around his room.

Amongst the videos, diagrams, metadata, and charts of the Tesseract panel, one item catches his attention. It’s the 3D depiction of the object, the tesseract itself, one of the Infinity Stones from the MCU. It is a cube rendered in a white wireframe, glowing cyan amidst the flat objects otherwise filling the display. It has an intense, cold-blue glow at its center.  Small facing circles surround the eight corners, from which thin cyan rule lines extend a couple of decimeters and connect to small, facing, inscrutable floating-point numbers and glyphs.


Wanting to look closer at it, he reaches up and places fingers along the edge as if it were a material object, and swipes it away from the display. It rests in his hand as if it was a real thing. He studies it for a minute and flicks his thumb forward to quickly switch the orientation 90° around the Y axis.

Then he has an Important Thought and the camera cuts to Agent Coulson and Steve Rogers flying to the helicarrier.

So regular readers of this blog (or you know, fans of blockbuster sci-fi movies in general) may have a Spidey-sense that this feels somehow familiar as an interface. Where else do we see a character grabbing an object from a volumetric projection to study it? That’s right, that seminal insult-to-scientists-and-audiences alike, Prometheus. When David encounters the Alien Astrometrics VP, he grabs the wee earth from that display to nuzzle it for a little bit. Follow the link if you want that full backstory. Or you can just look and imagine it, because the interaction is largely the same: See display, grab glowing component of the VP and manipulate it.

Prometheus-229 Two anecdotes are not yet a pattern, but I’m glad to see this particular interaction again. I’m going to call it grabby holograms (capitulating a bit on adherence to the more academic term volumetric projection.) We grow up having bodies and moving about in a 3D world, so the desire to grab and turn objects to understand them is quite natural. It does require that we stop thinking of displays as untouchable, uninterruptable movies and more like toy boxes, and it seems like more and more writers are catching on to this idea.

More graphics or more information?

Additionally,  the fact that this object is the one 3D object in its display is a nice affordance that it can be grabbed. I’m not sure whether he can pull the frame containing the JOINT DARK ENERGY MISSION video to study it on the couch, but I’m fairly certain I knew that the tesseract was grabbable before Tony reached out.

On the other hand, I do wonder what Tony could have learned by looking at the VP cube so intently. There’s no information there. It’s just a pattern on the sides. The glow doesn’t change. The little glyph sticks attached to the edges are fuigets. He might be remembering something he once saw or read, but he didn’t need to flick it like he did for any new information. Maybe he has flicked a VP tesseract in the past?

Augmented “reality”

Rather, I would have liked to have seen those glyph sticks display some useful information, perhaps acting as leaders that connected the VP to related data in the main display. One corner’s line could lead to the Zero Point Extraction chart. Another to the lovely orange waveform display. This way Tony could hold the cube and glance at its related information. These are all augmented reality additions.

Augmented VP

Or, even better, could he do some things that are possible with VPs that aren’t possible with AR. He should be able to scale it to be quite large or small. Create arbitrary sections, or plan views. Maybe fan out depictions of all objects in the SHIELD database that are similarly glowy, stone-like, or that remind him of infinity. Maybe…there’s…a…connection…there! Or better yet, have a copy of JARVIS study the data to find correlations and likely connections to consider. We’ve seen these genuine VP interactions plenty of places (including Tony’s own workshop), so they’re part of the diegesis.

Avengers_PullVP-05.pngIn any case, this simple setup works nicely, in which interaction with a cool media helps underscore the gravity of the situation, the height of the stakes. Note to selves: The imperturbable Tony Stark is perturbed. Shit is going to get real.


Stark Tower monitoring

Since Tony disconnected the power transmission lines, Pepper has been monitoring Stark Tower in its new, off-the-power-grid state. To do this she studies a volumetric dashboard display that floats above glowing shelves on a desktop.


Volumetric elements

The display features some volumetric elements, all rendered as wireframes in the familiar Pepper’s Ghost (I know, I know) visual style: translucent, edge-lit planes. A large component to her right shows Stark Tower, with red lines highlighting the power traveling from the large arc reactor in the basement through the core of the building.

The center of the screen has a similarly-rendered close up of the arc reactor. A cutaway shows a pulsing ring of red-tinged energy flowing through its main torus.

This component makes a good deal of sense, showing her the physical thing she’s meant to be monitoring but not in a photographic way, but a way that helps her quickly locate any problems in space. The torus cutaway is a little strange, since if she’s meant to be monitoring it, she should monitor the whole thing, not just a quarter of it that has been cut away.

Flat elements

The remaining elements in the display appear on a flat plane. Continue reading

Iron Man HUD: 2nd-person view

In the prior post we looked at the HUD display from Tony’s point of view. In this post we dive deeper into the 2nd-person view, which turns out to be not what it seems.

The HUD itself displays a number of core capabilities across the Iron Man movies prior to its appearance in The Avengers. Cataloguing these capabilities lets us understand (or backworld) how he interacts with the HUD, equipping us to look for its common patterns and possible conflicts. In the first-person view, we saw it looked almost entirely like a rich agentive display, but with little interaction. But then there’s this gorgeous 2nd-person view.

When in the first film Tony first puts the faceplate on and says to JARVIS, “Engage heads-up display”… IronMan1_HUD00 …we see things from a narrative-conceit, 2nd-person perspective, as if the helmet were huge and we are inside the cavernous space with him, seeing only Tony’s face and the augmented reality interface elements. IronMan1_HUD07 You might be thinking, “Of course it’s a narrative conceit. It’s not real. It’s in a movie.” But what I mean by that is that even in the diegesis, the Marvel Cinematic World, this is not something that could be seen. Let’s move through the reasons why. Continue reading

Iron Man HUD: 1st person view

In the prior post we catalogued the functions in the Iron HUD. Today we examine the 1st-person display.

When we first see the HUD, Tony is donning the Iron Man mask. Tony asks, “JARVIS, “You there?”” To which JARVIS replies, ““At your service sir.”” Tony tells him to “Engage the heads-up display,” and we see the HUD initialize. It is a dizzying mixture of blue wireframe motion graphics. Some imply system functions, such as the reticle that pinpoints Tony’s eye. Most are small dashboard-like gauges that remain small and in Tony’s peripheral vision while the information is not needed, and become larger and more central when needed. These features are catalogued in another post, but we learn about them through two points-of-view: a first-person view, which shows us what Tony’s sees as if we were there, donning the mask in his stead, and second-person view, which shows us Tony’s face overlaid against a dark background with floating graphics.

This post is about that first-person view. Specifically it’s about the visual design and the four awarenesses it displays.


In the Augmented Reality chapter of Make It So, I identified four types of awareness seen in the survey for Augmented Reality displays:

  1. Sensor display
  2. Location awareness
  3. Context awareness
  4. Goal awareness

The Iron Man HUD illustrates all four and is a useful framework for describing and critiquing the 1st-person view. Continue reading

Iron Man HUD: Just the functions

In the last post we went over the Iron HUD components. There is a great deal to say about the interactions and interface, but let’s just take a moment to recount everything that the HUD does over the Iron Man movies and The Avengers. Keep in mind that just as there are many iterations of the suit, there can be many iterations of the HUD, but since it’s largely display software controlled by JARVIS, the functions can very easily move between exosuits.


Along the bottom of the HUD are some small gauges, which, though they change iconography across the properties, are consistently present.


For the most part they persist as tiny icons and thereby hard to read, but when the suit reboots in a high-altitude freefall, we get to see giant versions of them, and can read that they are:

Continue reading


The first computer interface we see in the film occurs at 3:55. It’s an interface for housing and monitoring the tesseract, a cube that is described in the film as “an energy source” that S.H.I.E.L.D. plans to use to “harness energy from space.” We join the cube after it has unexpectedly and erratically begun to throw off low levels of gamma radiation.

The harnessing interface consists of a housing, a dais at the end of a runway, and a monitoring screen.


Fury walks past the dais they erected just because.

The housing & dais

The harness consists of a large circular housing that holds the cube and exposes one face of it towards a long runway that ends in a dais. Diegetically this is meant to be read more as engineering than interface, but it does raise questions. For instance, if they didn’t already know it was going to teleport someone here, why was there a dais there at all, at that exact distance, with stairs leading up to it? How’s that harnessing energy? Wouldn’t you expect a battery at the far end? If they did expect a person as it seems they did, then the whole destroying swaths of New York City thing might have been avoided if the runway had ended instead in the Hulk-holding cage that we see later in the film. So…you know…a considerable flaw in their unknown-passenger teleportation landing strip design. Anyhoo, the housing is also notable for keeping part of the cube visible to users near it, and holding it at a particular orientation, which plays into the other component of the harness—the monitor.

Avengers-cubemonitoring-03 Continue reading