Sci-fi Spacesuits: Moving around

Whatever it is, it ain’t going to construct, observe, or repair itself. In addition to protection and provision, suits must facilitate the reason the wearer has dared to go out into space in the first place.

One of the most basic tasks of extravehicular activity (EVA) is controlling where the wearer is positioned in space. The survey shows several types of mechanisms for this. First, if your EVA never needs you to leave the surface of the spaceship, you can go with mountaineering gear or sticky feet. (Or sticky hands.) We can think of maneuvering through space as similar to piloting a craft, but the outputs and interfaces have to be made wearable, like wearable control panels. We might also expect to see some tunnel in the sky displays to help with navigation. We’d also want to see some AI safeguard features, to return the spacewalker to safety when things go awry. (Narrator: We don’t.)

Mountaineering gear

In Stowaway (2021) astronauts undertake unplanned EVAs with carabiners and gear akin to mountaineers use. This makes some sense, though even this equipment needs to be modified for use by astronauts’ thick gloves.

Stowaway (2021) Drs Kim and Levinson prepare to scale to the propellant tank.

Sticky feet (and hands)

Though it’s not extravehicular, I have to give a shout out to 2001: A Space Odyssey (1969), where we see a flight attendant manage their position in the microgravity with special shoes that adhere to the floor. It’s a lovely example of a competent Hand Wave. We don’t need to know how it works because it says, right there, “Grip shoes.” Done. Though props to the actress Heather Downham, who had to make up a funny walk to illustrate that it still isn’t like walking on earth.

2001: A Space Odyssey (1969)
Pan Am: “Thank god we invented the…you know, whatever shoes.

With magnetic boots, seen in Destination Moon, the wearer simply walks around and manages the slight awkwardness of having to pull a foot up with extra force, and have it snap back down on its own.

Battlestar Galactica added magnetic handgrips to augment the control provided by magnetized boots. With them, Sergeant Mathias is able to crawl around the outside of an enemy vessel, inspecting it. While crawling, she holds grip bars mounted to circles that contain the magnets. A mechanism for turning the magnet off is not seen, but like these portable electric grabbers, it could be as simple as a thumb button.

Iron Man also had his Mark 50 suit form stabilizing suction cups before cutting a hole in the hull of the Q-Ship.

Avengers: Infinity War (2018)

In the electromagnetic version of boots, seen in Star Trek: First Contact, the wearer turns the magnets on with a control strapped to their thigh. Once on, the magnetization seems to be sensitive to the wearer’s walk, automatically lessening when the boot is lifted off. This gives the wearer something of a natural gait. The magnetism can be turned off again to be able to make microgravity maneuvers, such as dramatically leaping away from Borg minions.

Star Trek: Discovery also included this technology, but with what appears to be a gestural activation and a cool glowing red dots on the sides and back of the heel. The back of each heel has a stack of red lights that count down to when they turn off, as, I guess, a warning to anyone around them that they’re about to be “air” borne.

Quick “gotcha” aside: neither Destination Moon nor Star Trek: First Contact bothers to explain how characters are meant to be able to kneel while wearing magnetized boots. Yet this very thing happens in both films.

Destination Moon (1950): Kneeling on the surface of the spaceship.
Star Trek: First Contact (1996): Worf rises from operating the maglock to defend himself.

Controlled Propellant

If your extravehicular task has you leaving the surface of the ship and moving around space, you likely need a controlled propellant. This is seen only a few times in the survey.

In the film Mission to Mars, the manned mobility unit, or MMU, seen in the film is based loosely on NASA’s MMU. A nice thing about the device is that unlike the other controlled propellant interfaces, we can actually see some of the interaction and not just the effect. The interfaces are subtly different in that the Mission to Mars spacewalkers travel forward and backward by angling the handgrips forward and backward rather than with a joystick on an armrest. This seems like a closer mapping, but also seems more prone to error by accidental touching or bumping into something.

The plus side is an interface that is much more cinegenic, where the audience is more clearly able to see the cause and effect of the spacewalker’s interactions with the device.

If you have propellent in a Moh’s 4 or 5 film, you might need to acknowledge that propellant is a limited resource. Over the course of the same (heartbreaking) scene shown above, we see an interface where one spacewalker monitors his fuel, and another where a spacewalker realizes that she has traveled as far as she can with her MMU and still return to safety.

Mission to Mars (2000): Woody sees that he’s out of fuel.

For those wondering, Michael Burnham’s flight to the mysterious signal in that pilot uses propellant, but is managed and monitored by controllers on Discovery, so it makes sense that we don’t see any maneuvering interfaces for her. We could dive in and review the interfaces the bridge crew uses (and try to map that onto a spacesuit), but we only get snippets of these screens and see no controls.

Iron Man’s suits employ some Phlebotinum propellant that lasts for ever, can fit inside his tailored suit, and are powerful enough to achieve escape velocity.

Avengers: Infinity War (2018)

All-in-all, though sci-fi seems to understand the need for characters to move around in spacesuits, very little attention is given to the interfaces that enable it. The Mission to Mars MMU is the only one with explicit attention paid to it, and that’s quite derived from NASA models. It’s an opportunity for film makers should the needs of the plot allow, to give this topic some attention.

Headrest jack


The jack mechanism in the intercept van is worth noting for its industrial design. Kusanagi has four jacks on the back of her neck in a square pattern. Four plugs sit on the headrest of her seat. To jack in, she simply leans back, and they seat perfectly. She leans forward, and the cables extend from the seat. Given the simple back and forward motion, it takes all of a second. Seems simple enough. But I’ve committed a blog post to it, so of course you can guess it’s not really that simple. I can see two issues with this interface.

How do the jacks and plugs meet so perfectly?

Of course, she’s a super cyborg, so we can presume she can be quite precise in her movements. But does she have eyes/cameras on the back of her head, or precision kinesthetics and a perfect body memory for position? Even if she does, it would be better would be to accommodate some margin of error to account for bumpy roads or action-packed driving maneuvers.

How to do this? One way would be a countersink so that a sloppy approach is corrected by shape. The popular (and difficult-to-source) keyhole for drunk people uses this same principle. Unfortunately, in the case of this headrest jack, the base object is Kusanagi’s neck, which is functionally a cylinder. The cones on the back of her neck would have to be unsightly large or a miss would splay the plugs and force her to retry. Fortunately, the second issue leads us to another solution.


How does she genuinely rest against the seat when she doesn’t want to jack in?

Is that even an option here? How does she simply lean back for a road trip nap without being blasted awake by a neon green 3D Google Map?

If it was a magnetic connection, like Apple’s MagSafe power connectors, the jacks and plugs could be designed such that magnetic forces pull them together. But unlike MagSafe, these jacks could be electromagnets controlled by Kusanagi. This would not only ensure intended connections, but also help deal with the precision issues raised above. The electromagnets would snap the plugs into place even if they were misaligned.


An electromagnetic interface would also answer the question of how this works for taller or shorter cyborgs hoping to use the same headrest jack.

An automated solution

This solution does require complex mechanics in the body of the rider. That’s no problem for the Ghost in the Shell diegesis, but if we were facing a challenge like this in the real world, implanting users with tech isn’t a viable solution. Instead, we could push the technology back on the van by letting it do the aiming. In the half a second she leans back, the van itself can look through a camera in the headrest to gauge the fit, and position the plugs correctly with, say, linear actuators. This solution lets human users stay human, but would ensure a precision fit where it was needed.