Talking to a Puppet

As mentioned, Johnny in the last phone conversation in the van is not talking to the person he thinks he is. The film reveals Takahashi at his desk, using his hand as if he were a sock puppeteer—but there is no puppet. His desk is emitting a grid of green light to track the movement of his hand and arm.

jm-22-puppet-call-c

The Make It So chapter on gestural interfaces suggests Takahashi is using his hand to control the mouth movements of the avatar. I’d clarify this a bit. Lip synching by human animators is difficult even when not done in real time, and while it might be possible to control the upper lip with four fingers, one thumb is not enough to provide realistic motion of the lower lip. Continue reading

Green Laser Scan

In a very brief scene, Theo walks through a security arch on his way into the Ministry of Energy. After waiting in queue, he walks towards a rectangular archway. At his approach, two horizontal green laser lines scan him from head to toe. Theo passes through the arch with no trouble.

childrenofmen-002

Though the archway is quite similar to metal detection technology used in airports today, the addition of the lasers hints at additional data being gathered, such as surface mapping for a face-matching algorithm.

We know that security mostly cares about what’s hidden under clothes or within bodies and bags, rather than confirming the surface that security guards can see, so it’s not likely to be an actual technological requirement of the scan. Rather it is a visual reminder to participants and onlookers that the scan is in progress, and moreover that this the Ministry is a secured space.

Though we could argue that the signal could be made more visible, laser light is very eye catching and human eyes are most sensitive at 555nm, and this bright green is the closest to the 808 diode laser at 532nm. So for being an economic, but eye catching signal, this green laser is a perfect choice.

High Tech Binoculars

In Johnny Mnemonic we see two different types of binoculars with augmented reality overlays and other enhancements: Yakuz-oculars, and LoTek-oculars.

Yakuz-oculars

The Yakuza are the last to be seen but also the simpler of the two. They look just like a pair of current day binoculars, but this is the view when the leader surveys the LoTek bridge.

jm-25-yakuza-binocs-adjusted

I assume that the characters here are Japanese? Anyone?

In the centre is a fixed-size green reticule. At the bottom right is what looks like the magnification factor. At the top left and bottom left are numbers, using Western digits, that change as the binoculars move. Without knowing what the labels are I can only guess that they could be azimuth and elevation angles, or distance and height to the centre of the reticule. (The latter implies some sort of rangefinder.) Continue reading

Airport Security

After fleeing the Yakuza in the hotel, Johnny arrives in the Free City of Newark, and has to go through immigration control. This process appears to be entirely automated, starting with an electronic passport reader.

jm-9-customs-b

After that there is a security scanner, which is reminiscent of HAL from the film 2001: A Space Odyssey.

jm-9-customs-f

The green light runs over Johnny from top to bottom. Continue reading

Brain Upload

Once Johnny has installed his motion detector on the door, the brain upload can begin.

3. Building it

Johnny starts by opening his briefcase and removing various components, which he connects together into the complete upload system. Some of the parts are disguised, and the whole sequence is similar to an assassin in a thriller film assembling a gun out of harmless looking pieces.

jm-6-uploader-kit-a

It looks strange today to see a computer system with so many external devices connected by cables. We’ve become accustomed to one piece computing devices with integrated functionality, and keyboards, mice, cameras, printers, and headphones that connect wirelessly.

Cables and other connections are not always considered as interfaces, but “all parts of a thing which enable its use” is the definition according to Chris. In the early to mid 1990s most computer user were well aware of the potential for confusion and frustration in such interfaces. A personal computer could have connections to monitor, keyboard, mouse, modem, CD drive, and joystick – and every single device would use a different type of cable. USB, while not perfect, is one of the greatest ever improvements in user interfaces. Continue reading

Viper Launch Control

image02

The Galactica’s fighter launch catapults are each controlled by a ‘shooter’ in an armored viewing pane.  There is one ‘shooter’ for every two catapults.  To launch a Viper, he has a board with a series of large twist-handles, a status display, and a single button.  We can also see several communication devices:

  • Ear-mounted mic and speaker
  • Board mounted mic
  • Phone system in the background

These could relate to one of several lines of communication each:

  • The Viper pilot
  • Any crew inside the launch pod
  • Crew just outside the launch pod
  • CIC (for strategic status updates)
  • Other launch controllers at other stations
  • Engineering teams
  • ‘On call’ rooms for replacement operators

image05

Each row on the launch display appears to conform to some value coming off of the Viper or the Galactica’s magnetic catapults.  The ‘shooter’ calls off Starbuck’s launch three times due to some value he sees on his status board (fluctuating engine power right before launch).

We do not see any other data inputs.  Something like a series of cameras on a closed circuit could show him an exterior view of the entire Viper, providing additional information to the sensors.

When Starbuck is ready to launch on the fourth try, the ‘shooter’ twists the central knob and, at the same time and with the same hand, pushes down a green button.  The moment the ‘shooter’ hits the button, Starbuck’s Viper is launched into space.

image04

There are other twist knobs across the entire board, but these do not appear to conform directly to the act of launching the Viper, and they do not act like the central knob.  They appear instead to be switches, where turning them from one position to another locks them in place.

There is no obvious explanation for the number of twist knobs, but each one might conform to an electrical channel to the catapult, or some part of the earlier launch sequence.

Manual Everything

Nothing in the launch control interprets anything for the ‘shooter’.  He is given information, then expected to interpret it himself.  From what we see, this information is basic enough to not cause a problem and allow him to quickly make a decision.

Without networking the launch system together so that it can poll its own information and make its own decisions, there is little that can improve the status indicators. (And networking is made impossible in this show because of Cylon hackers.) The board is easily visible from the shooter chair, each row conforms directly to information coming in from the Viper, and the relate directly to the task at hand.

The most dangerous task the shooter does is actually decide to launch the Viper into space.  If either the Galactica or the Viper isn’t ready for that action, it could cause major damage to the Viper and the launch systems.

A two-step control for this is the best method, and the system now requires two distinct motions (a twist-and-hold, then a separate and distinct *click*).  This is effective at confirming that the shooter actually wants to send the Viper into space.

To improve this control, the twist and button could be moved far enough apart (reference, under “Two-Hand Controls” ) that it requires two hands to operate the control.  That way, there is no doubt that the shooter intends to activate the catapult.

If the controls are separated like that, it would take some amount of effort to make sure the two controls are visually connected across the board, either through color, or size, or layout.  Right now, that would be complicated by the similarity in the final twist control, and the other handles that do different jobs.

Changing these controls to large switches or differently shaped handles would make the catapult controls less confusing to use.

 

Viper Controls

image03

The Viper is the primary space fighter of the Colonial Fleet.  It comes in several varieties, from the Mark II (shown above), to the Mark VII (the latest version).  Each is made for a single pilot, and the controls allow the pilot to navigate short distances in space to dogfight with enemy fighters.

image09

Mark II Viper Cockpit

The Mark II Viper is an analog machine with a very simple Dradis, physical gauges, and paper flight plans.  It is a very old system.  The Dradis sits in the center console with the largest screen real-estate.  A smaller needle gauge under the Dradis shows fuel levels, and a standard joystick/foot pedal system provides control over the Viper’s flight systems.

image06

Mark VII Viper Cockpit

The Viper Mk VII is a mostly digital cockpit with a similar Dradis console in the middle (but with a larger screen and more screen-based controls and information).  All other displays are digital screens.  A few physical buttons are scattered around the top and bottom of the interface.  Some controls are pushed down, but none are readable.  Groups of buttons are titled with text like “COMMS CIPHER” and “MASTER SYS A”.

Eight buttons around the Dradis console are labeled with complex icons instead of text.

image07 image08

When the Mk VII Vipers encounter Cylons for the first time, the Cylons use a back-door computer virus to completely shut down the Viper’s systems.  The screens fuzz out in the same manner as when Apollo gets caught in an EMP burst.

The Viper Mk VII is then completely uncontrollable, and the pilot’s’ joystick-based controls cease to function.

Overall, the Viper Mk II is set up similarly to a WWII P-52 Mustang or early production F-15 Eagle, while the Viper Mk VII is similar to a modern-day F-16 Falcon or F-22 Raptor .

 

Usability Concerns

The Viper is a single seat starfighter, and appears to excel in that role.  The pilots focus on their ship, and the Raptor pilots following them focus on the big picture.  But other items, including color choice, font choice, and location are an issue.

Otherwise, Items appear a little small, and it requires a lot of training to know what to look for on the dashboards. Also, the black lines radiating from the large grouper labels appear to go nowhere and provide no extra context or grouping.  Additionally, the controls (outside of the throttle and joystick) require quite a bit of reach from the seat.

Given that the pilots are accelerating at 9+ gs, reaching a critical control in the middle of a fight could be difficult.  Hopefully, the designers of the Vipers made sure that ‘fighting’ controls are all within arms reach of the seat, and that the controls requiring more effort are secondary tasks.

Similarly, all-caps text is the hardest to read at a glance, and should be avoided for interfaces like the Viper that require quick targeting and actions in the middle of combat.  The other text is very small, and it would be worth doing a deeper evaluation in the cockpit itself to determine if the font size is too small to read from the seat.

If anyone reading this blog has an accurate Viper cockpit prop, we’d be happy to review it! 

Fighter pilots in the Battlestar Galactica universe have quick reflexes, excellent vision, and stellar training.  They should be allowed to use all of those abilities for besting Cylons in a dogfight, instead of being forced to spend time deciphering their Viper’s interface.