Sci-fi Spacesuits: Audio Comms


A special subset of spacesuit interfaces is the communication subsystems. I wrote a whole chapter about Communications in Make It So, but spacesuit comms bear special mention, since they’re usually used in close physical proximity but still must be mediated by technology, the channels for detailed control are clumsy and packed, and these communicators are often being overseen by a mission control center of some sort. You’d think this is rich territory, but spoiler: There’s not a lot of variation to study.

Every single spacesuit in the survey has audio. This is so ubiquitous and accepted that, after 1950, no filmmaker has thought the need to explain it or show an interface for it. So you’d think that we’d see a lot of interactions.

Spacesuit communications in sci-fi tend to be many-to-many with no apparent means of control. Not even a push-to-mute if you sneezed into your mic. It’s as if the spacewalkers were in a group, merely standing near each other in air, chatting. No push-to-talk or volume control is seen. Communication with Mission Control is automatic. No audio cues are given to indicate distance, direction, or source of the sound, or to select a subset of recipients.

The one seeming exception to the many-to-many communication is seen in the reboot of Battlestar Galactica. As Boomer is operating a ship above a ground crew, shining a light down on them for visibility, she has the following conversation with Tyrol.

  • Tyrol
  • Raptor 478, this is DC-1, I have you in my sights.
  • Boomer
  • Copy that, DC-1. I have you in sight.
  • Tyrol
  • Understood.
  • Boomer
  • How’s it looking there? Can you tell what happened?
  • Tyrol
  • Lieutenant, don’t worry…about my team. I got things under control.
  • Boomer
  • Copy that, DC-1. I feel better knowing you’re on it.

Then, when her copilot gives her a look about what she has just said, she says curtly to him, “Watch the light, you’re off target.” In this exchange there is clear evidence that the copilot has heard the first conversation, but it appears that her comment to him is addressed to him and not for the others to hear. Additionally, we do not hear chatter going on between the ground grew during this exchange. Unfortunately, we do not see any of the conversationalists touch a control to give us an idea about how they switch between these modes. So, you know, still nothing.

More recent films, especially in the MCU, has seen all sorts of communication controlled by voice with the magic of General AI…pause for gif…


…but as I mention more and more, once you have a General AI in the picture, we leave the realm of critique-able interactions. Because an AI did it.

In short, sci-fi just doesn’t care about showing audio controls in sci-fi spacesuits, and isn’t likely to start caring anytime soon. As always, if you know of something outside my survey, please mention it.

For reference, in the real world, a NASA astronaut has direct control over the volume of audio that she hears, using potentiometer volume controls. (Curiously the numbers on them are not backwards, unlike the rest of the controls.)

A spacewalker uses the COMM dial switch mode selector at the top of the DCM to select between three different frequencies of wireless communication, each of which broadcasts to each other and the vehicle. When an astronaut is on one of the first two channels, transmission is voice-activated. But a backup, “party line” channel requires push-to-talk, and this is what the push-to-talk control is for.

By default, all audio is broadcast to all other spacewalkers, the vehicle, and Mission Control. To speak privately, without Mission Control hearing, spacewalkers don’t have an engineered option. But if one of the radio frequency bands happens to be suffering a loss of signal to Mission Control, she can use this technological blind spot to talk with some degree of privacy.

Sci-fi Spacesuits: Moving around

Whatever it is, it ain’t going to construct, observe, or repair itself. In addition to protection and provision, suits must facilitate the reason the wearer has dared to go out into space in the first place.

One of the most basic tasks of extravehicular activity (EVA) is controlling where the wearer is positioned in space. The survey shows several types of mechanisms for this. First, if your EVA never needs you to leave the surface of the spaceship, you can go with mountaineering gear or sticky feet. (Or sticky hands.) We can think of maneuvering through space as similar to piloting a craft, but the outputs and interfaces have to be made wearable, like wearable control panels. We might also expect to see some tunnel in the sky displays to help with navigation. We’d also want to see some AI safeguard features, to return the spacewalker to safety when things go awry. (Narrator: We don’t.)

Mountaineering gear

In Stowaway (2021) astronauts undertake unplanned EVAs with carabiners and gear akin to mountaineers use. This makes some sense, though even this equipment needs to be modified for use by astronauts’ thick gloves.

Stowaway (2021) Drs Kim and Levinson prepare to scale to the propellant tank.

Sticky feet (and hands)

Though it’s not extravehicular, I have to give a shout out to 2001: A Space Odyssey (1969), where we see a flight attendant manage their position in the microgravity with special shoes that adhere to the floor. It’s a lovely example of a competent Hand Wave. We don’t need to know how it works because it says, right there, “Grip shoes.” Done. Though props to the actress Heather Downham, who had to make up a funny walk to illustrate that it still isn’t like walking on earth.

2001: A Space Odyssey (1969)
Pan Am: “Thank god we invented the…you know, whatever shoes.

With magnetic boots, seen in Destination Moon, the wearer simply walks around and manages the slight awkwardness of having to pull a foot up with extra force, and have it snap back down on its own.

Battlestar Galactica added magnetic handgrips to augment the control provided by magnetized boots. With them, Sergeant Mathias is able to crawl around the outside of an enemy vessel, inspecting it. While crawling, she holds grip bars mounted to circles that contain the magnets. A mechanism for turning the magnet off is not seen, but like these portable electric grabbers, it could be as simple as a thumb button.

Iron Man also had his Mark 50 suit form stabilizing suction cups before cutting a hole in the hull of the Q-Ship.

Avengers: Infinity War (2018)

In the electromagnetic version of boots, seen in Star Trek: First Contact, the wearer turns the magnets on with a control strapped to their thigh. Once on, the magnetization seems to be sensitive to the wearer’s walk, automatically lessening when the boot is lifted off. This gives the wearer something of a natural gait. The magnetism can be turned off again to be able to make microgravity maneuvers, such as dramatically leaping away from Borg minions.

Star Trek: Discovery also included this technology, but with what appears to be a gestural activation and a cool glowing red dots on the sides and back of the heel. The back of each heel has a stack of red lights that count down to when they turn off, as, I guess, a warning to anyone around them that they’re about to be “air” borne.

Quick “gotcha” aside: neither Destination Moon nor Star Trek: First Contact bothers to explain how characters are meant to be able to kneel while wearing magnetized boots. Yet this very thing happens in both films.

Destination Moon (1950): Kneeling on the surface of the spaceship.
Star Trek: First Contact (1996): Worf rises from operating the maglock to defend himself.

Controlled Propellant

If your extravehicular task has you leaving the surface of the ship and moving around space, you likely need a controlled propellant. This is seen only a few times in the survey.

In the film Mission to Mars, the manned mobility unit, or MMU, seen in the film is based loosely on NASA’s MMU. A nice thing about the device is that unlike the other controlled propellant interfaces, we can actually see some of the interaction and not just the effect. The interfaces are subtly different in that the Mission to Mars spacewalkers travel forward and backward by angling the handgrips forward and backward rather than with a joystick on an armrest. This seems like a closer mapping, but also seems more prone to error by accidental touching or bumping into something.

The plus side is an interface that is much more cinegenic, where the audience is more clearly able to see the cause and effect of the spacewalker’s interactions with the device.

If you have propellent in a Moh’s 4 or 5 film, you might need to acknowledge that propellant is a limited resource. Over the course of the same (heartbreaking) scene shown above, we see an interface where one spacewalker monitors his fuel, and another where a spacewalker realizes that she has traveled as far as she can with her MMU and still return to safety.

Mission to Mars (2000): Woody sees that he’s out of fuel.

For those wondering, Michael Burnham’s flight to the mysterious signal in that pilot uses propellant, but is managed and monitored by controllers on Discovery, so it makes sense that we don’t see any maneuvering interfaces for her. We could dive in and review the interfaces the bridge crew uses (and try to map that onto a spacesuit), but we only get snippets of these screens and see no controls.

Iron Man’s suits employ some Phlebotinum propellant that lasts for ever, can fit inside his tailored suit, and are powerful enough to achieve escape velocity.

Avengers: Infinity War (2018)

All-in-all, though sci-fi seems to understand the need for characters to move around in spacesuits, very little attention is given to the interfaces that enable it. The Mission to Mars MMU is the only one with explicit attention paid to it, and that’s quite derived from NASA models. It’s an opportunity for film makers should the needs of the plot allow, to give this topic some attention.

Sci-fi Spacesuits: Biological needs

Spacesuits must support the biological functioning of the astronaut. There are probably damned fine psychological reasons to not show astronauts their own biometric data while on stressful extravehicular missions, but there is the issue of comfort. Even if temperature, pressure, humidity, and oxygen levels are kept within safe ranges by automatic features of the suit, there is still a need for comfort and control inside of that range. If the suit is to be warn a long time, there must be some accommodation for food, water, urination, and defecation. Additionally, the medical and psychological status of the wearer should be monitored to warn of stress states and emergencies.

Unfortunately, the survey doesn’t reveal any interfaces being used to control temperature, pressure, or oxygen levels. There are some for low oxygen level warnings and testing conditions outside the suit, but these are more outputs than interfaces where interactions take place.

There are also no nods to toilet necessities, though in fairness Hollywood eschews this topic a lot.

The one example of sustenance seen in the survey appears in Sunshine, we see Captain Kaneda take a sip from his drinking tube while performing a dangerous repair of the solar shields. This is the only food or drink seen in the survey, and it is a simple mechanical interface, held in place by material strength in such a way that he needs only to tilt his head to take a drink.

Similarly, in Sunshine, when Capa and Kaneda perform EVA to repair broken solar shields, Cassie tells Capa to relax because he is using up too much oxygen. We see a brief view of her bank of screens that include his biometrics.

Remote monitoring of people in spacesuits is common enough to be a trope, but has been discussed already in the Medical chapter in Make It So, for more on biometrics in sci-fi.

Crowe’s medical monitor in Aliens (1986).

There are some non-interface biological signals for observers. In the movie Alien, as the landing party investigates the xenomorph eggs, we can see that the suit outgases something like steam—slower than exhalations, but regular. Though not presented as such, the suit certainly confirms for any onlooker that the wearer is breathing and the suit functioning.

Given that sci-fi technology glows, it is no surprise to see that lots and lots of spacesuits have glowing bits on the exterior. Though nothing yet in the survey tells us what these lights might be for, it stands to reason that one purpose might be as a simple and immediate line-of-sight status indicator. When things are glowing steadily, it means the life support functions are working smoothly. A blinking red alert on the surface of a spacesuit could draw attention to the individual with the problem, and make finding them easier.

Emergency deployment

One nifty thing that sci-fi can do (but we can’t yet in the real world) is deploy biology-protecting tech at the touch of a button. We see this in the Marvel Cinematic Universe with Starlord’s helmet.

If such tech was available, you’d imagine that it would have some smart sensors to know when it must automatically deploy (sudden loss of oxygen or dangerous impurities in the air), but we don’t see it. But given this speculative tech, one can imagine it working for a whole spacesuit and not just a helmet. It might speed up scenes like this.

What do we see in the real world?

Are there real-world controls that sci-fi is missing? Let’s turn to NASA’s space suits to compare.

The Primary Life-Support System (PLSS) is the complex spacesuit subsystem that provides the life support to the astronaut, and biomedical telemetry back to control. Its main components are the closed-loop oxygen-ventilation system for cycling and recycling oxygen, the moisture (sweat and breath) removal system, and the feedwater system for cooling.

The only “biology” controls that the spacewalker has for these systems are a few on the Display and Control Module (DCM) on the front of the suit. They are the cooling control valve, the oxygen actuator slider, and the fan switch. Only the first is explicitly to control comfort. Other systems, such as pressure, are designed to maintain ideal conditions automatically. Other controls are used for contingency systems for when the automatic systems fail.

Hey, isn’t the text on this thing backwards? Yes, because astronauts can’t look down from inside their helmets, and must view these controls via a wrist mirror. More on this later.

The suit is insulated thoroughly enough that the astronaut’s own body heats the interior, even in complete shade. Because the astronaut’s body constantly adds heat, the suit must be cooled. To do this, the suit cycles water through a Liquid Cooling and Ventilation Garment, which has a fine network of tubes held closely to the astronaut’s skin. Water flows through these tubes and past a sublimator that cools the water with exposure to space. The astronaut can increase or decrease the speed of this flow and thereby the amount to which his body is cooled, by the cooling control valve, a recessed radial valve with fixed positions between 0 (the hottest) and 10 (the coolest), located on the front of the Display Control Module.

The spacewalker does not have EVA access to her biometric data. Sensors measure oxygen consumption and electrocardiograph data and broadcast it to the Mission Control surgeon, who monitors it on her behalf. So whatever the reason is, if it’s good enough for NASA, it’s good enough for the movies.


Back to sci-fi

So, we do see temperature and pressure controls on suits in the real world, which underscores their absence in sci-fi. But, if there hasn’t been any narrative or plot reason for such things to appear in a story, we should not expect them.

Sci-fi Spacesuits: Protecting the Wearer from the Perils of Space

Space is incredibly inhospitable to life. It is a near-perfect vacuum, lacking air, pressure, and warmth. It is full of radiation that can poison us, light that can blind and burn us, and a darkness that can disorient us. If any hazardous chemicals such as rocket fuel have gotten loose, they need to be kept safely away. There are few of the ordinary spatial clues and tools that humans use to orient and control their position. There are free-floating debris that range from to bullet-like micrometeorites to gas and rock planets that can pull us toward them to smash into their surface or burn in their atmospheres. There are astronomical bodies such as stars and black holes that can boil us or crush us into a singularity. And perhaps most terrifyingly, there is the very real possibility of drifting off into the expanse of space to asphyxiate, starve (though biology will be covered in another post), freeze, and/or go mad.

The survey shows that sci-fi has addressed most of these perils at one time or another.

Alien (1976): Kane’s visor is melted by a facehugger’s acid.

Interfaces

Despite the acknowledgment of all of these problems, the survey reveals only two interfaces related to spacesuit protection.

Battlestar Galactica (2004) handled radiation exposure with simple, chemical output device. As CAG Lee Adama explains in “The Passage,” the badge, worn on the outside of the flight suit, slowly turns black with radiation exposure. When the badge turns completely black, a pilot is removed from duty for radiation treatment.

This is something of a stretch because it has little to do with the spacesuit itself, and is strictly an output device. (Nothing that proper interaction requires human input and state changes.) The badge is not permanently attached to the suit, and used inside a spaceship while wearing a flight suit. The flight suit is meant to act as a very short term extravehicular mobility unit (EMU), but is not a spacesuit in the strict sense.

The other protection related interface is from 2001: A Space Odyssey. As Dr. Dave Bowman begins an extravehicular activity to inspect seemingly-faulty communications component AE-35, we see him touch one of the buttons on his left forearm panel. Moments later his visor changes from being transparent to being dark and protective.

We should expect to see few interfaces, but still…

As a quick and hopefully obvious critique, Bowman’s function shouldn’t have an interface. It should be automatic (not even agentive), since events can happen much faster than human response times. And, now that we’ve said that part out loud, maybe it’s true that protection features of a suit should all be automatic. Interfaces to pre-emptively switch them on or, for exceptional reasons, manually turn them off, should be the rarity.

But it would be cool to see more protective features appear in sci-fi spacesuits. An onboard AI detects an incoming micrometeorite storm. Does the HUD show much time is left? What are the wearer’s options? Can she work through scenarios of action? Can she merely speak which course of action she wants the suit to take? If a wearer is kicked free of the spaceship, the suit should have a homing feature. Think Doctor Strange’s Cloak of Levitation, but for astronauts.

As always, if you know of other examples not in the survey, please put them in the comments.

Pilot seat

Prometheus_PilotSeat-0006

The reawakened alien places his hand in the green display and holds it there for a few seconds. This summons a massive pilot seat. If the small green sphere is meant to be a map to the large cyan astrometric sphere, the mapping is questionable. Better perhaps would be to touch where the seat would appear and lift upwards through the sphere.

He climbs into the seat and presses some of the “egg buttons” arrayed on the armrests and on an oval panel above his head. The buttons illuminate in response, blinking individually from within. The blink pattern for each is regular, so it’s difficult to understand what information this visual noise conveys. A few more egg presses re-illuminate the cyan astrometric display.

Prometheus_PilotSeat-0010

A few more presses on the overhead panel revs up the spaceship’s engines and seals him in an organic spacesuit. The overhead panel slowly advances towards his face. The purpose for this seems inexplicable. If it was meant to hold the alien in place, why would it do so with controls? Even if they’re just navigation controls that no longer matter since he is on autopilot, he wouldn’t be able to take back sudden navigation control in a crisis. If the armrest panels also let him navigate, why are the controls split between the two parts?

Prometheus_PilotSeat-0012

Prometheus_PilotSeat-0014

On automatic at this point, the VP traces a thin green arc from the chair to the VP earth and adds highlight graphics around it. Then the ceiling opens and the spaceships lifts up into the air.