Sci-fi Spacesuits: Audio Comms


A special subset of spacesuit interfaces is the communication subsystems. I wrote a whole chapter about Communications in Make It So, but spacesuit comms bear special mention, since they’re usually used in close physical proximity but still must be mediated by technology, the channels for detailed control are clumsy and packed, and these communicators are often being overseen by a mission control center of some sort. You’d think this is rich territory, but spoiler: There’s not a lot of variation to study.

Every single spacesuit in the survey has audio. This is so ubiquitous and accepted that, after 1950, no filmmaker has thought the need to explain it or show an interface for it. So you’d think that we’d see a lot of interactions.

Spacesuit communications in sci-fi tend to be many-to-many with no apparent means of control. Not even a push-to-mute if you sneezed into your mic. It’s as if the spacewalkers were in a group, merely standing near each other in air, chatting. No push-to-talk or volume control is seen. Communication with Mission Control is automatic. No audio cues are given to indicate distance, direction, or source of the sound, or to select a subset of recipients.

The one seeming exception to the many-to-many communication is seen in the reboot of Battlestar Galactica. As Boomer is operating a ship above a ground crew, shining a light down on them for visibility, she has the following conversation with Tyrol.

  • Tyrol
  • Raptor 478, this is DC-1, I have you in my sights.
  • Boomer
  • Copy that, DC-1. I have you in sight.
  • Tyrol
  • Understood.
  • Boomer
  • How’s it looking there? Can you tell what happened?
  • Tyrol
  • Lieutenant, don’t worry…about my team. I got things under control.
  • Boomer
  • Copy that, DC-1. I feel better knowing you’re on it.

Then, when her copilot gives her a look about what she has just said, she says curtly to him, “Watch the light, you’re off target.” In this exchange there is clear evidence that the copilot has heard the first conversation, but it appears that her comment to him is addressed to him and not for the others to hear. Additionally, we do not hear chatter going on between the ground grew during this exchange. Unfortunately, we do not see any of the conversationalists touch a control to give us an idea about how they switch between these modes. So, you know, still nothing.

More recent films, especially in the MCU, has seen all sorts of communication controlled by voice with the magic of General AI…pause for gif…


…but as I mention more and more, once you have a General AI in the picture, we leave the realm of critique-able interactions. Because an AI did it.

In short, sci-fi just doesn’t care about showing audio controls in sci-fi spacesuits, and isn’t likely to start caring anytime soon. As always, if you know of something outside my survey, please mention it.

For reference, in the real world, a NASA astronaut has direct control over the volume of audio that she hears, using potentiometer volume controls. (Curiously the numbers on them are not backwards, unlike the rest of the controls.)

A spacewalker uses the COMM dial switch mode selector at the top of the DCM to select between three different frequencies of wireless communication, each of which broadcasts to each other and the vehicle. When an astronaut is on one of the first two channels, transmission is voice-activated. But a backup, “party line” channel requires push-to-talk, and this is what the push-to-talk control is for.

By default, all audio is broadcast to all other spacewalkers, the vehicle, and Mission Control. To speak privately, without Mission Control hearing, spacewalkers don’t have an engineered option. But if one of the radio frequency bands happens to be suffering a loss of signal to Mission Control, she can use this technological blind spot to talk with some degree of privacy.

Luke’s predictive HUD

When Luke is driving Kee and Theo to a boat on the coast, the car’s heads-up-display shows him the car’s speed with a translucent red number and speed gauge. There are also two broken, blurry gauges showing unknown information.

Suddenly the road becomes blocked by a flaming car rolled onto the road by a then unknown gang. In response, an IMPACT warning triangle zooms in several times to warn the driver of the danger, accompanied by a persistent dinging sound.

childrenofmen-impact-08

It commands attention effectively

Continue reading

Headsets

Luke, Chewie, the comms officer aboard the Revenge, and this orange lizard/cat thing wear similar headsets in the short. Each consists of headphones with a coronal headband and a microphone on a boom that holds it in front of their mouths.

FaithfulWookie-headset-pinch.png

The only time we see something resembling a control, Luke attempts to report back to the Rebel base. To do so, he uses his right hand to pinch (or hold?) the microphone as he says, “This is Y4 to base.” Then he releases the mic and continues, “He’s heading straight for a moon in…the Panna system.” Continue reading

Brain Upload

Once Johnny has installed his motion detector on the door, the brain upload can begin.

3. Building it

Johnny starts by opening his briefcase and removing various components, which he connects together into the complete upload system. Some of the parts are disguised, and the whole sequence is similar to an assassin in a thriller film assembling a gun out of harmless looking pieces.

jm-6-uploader-kit-a

It looks strange today to see a computer system with so many external devices connected by cables. We’ve become accustomed to one piece computing devices with integrated functionality, and keyboards, mice, cameras, printers, and headphones that connect wirelessly.

Cables and other connections are not always considered as interfaces, but “all parts of a thing which enable its use” is the definition according to Chris. In the early to mid 1990s most computer user were well aware of the potential for confusion and frustration in such interfaces. A personal computer could have connections to monitor, keyboard, mouse, modem, CD drive, and joystick – and every single device would use a different type of cable. USB, while not perfect, is one of the greatest ever improvements in user interfaces. Continue reading

The Galactica Phone Network

image05

The phone system aboard the Galactica is a hardwired system that can be used in two modes: Point-to-point, and one-to-many.  The phones have an integrated handset wired to a control box and speaker.  The buttons on the control box are physical keys, and there are no automatic voice controls.

In Point-to-point mode, the phones act as a typical communication system, where one station can call a single other station.  In the one-to-many mode the phones are used as a public address system, where a single station can broadcast to the entire ship.

image07

The phones are also shown acting as broadcast speakers.  These speakers are able to take in many different formats of audio, and are shown broadcasting various different feeds:

  • Ship-wide Alerts (“Action Stations!”)
  • Local alarms (Damage control/Fire inside a specific bulkhead)
  • Radio Streams (pilot audio inside the launch prep area)
  • Addresses (calling a person to the closest available phone)

image06

Each station is independent and generic.  Most phones are located in public spaces or large rooms, with only a few in private areas.  These private phones serve the senior staff in their private quarters, or at their stations on the bridge.

image11

In each case, the phone stations are used as kiosks, where any crewmember can use any phone.  It is implied that there is a communications officer acting as a central operator for when a crewmember doesn’t know the appropriate phone number, or doesn’t know the current location of the person they want to reach.

Utterly Basic

There is not a single advanced piece of technology inside the phone system.  The phones act as a dirt-simple way to communicate with a place, not a person (the person just happens to be there while you’re talking).

image10

The largest disadvantage of this system is that it provides no assistance for its users: busy crewmembers of an active warship.  These crew can be expected to need to communicate in the heat of battle, and quickly relay orders or information to a necessary party.

This is easy for the lower levels of crewmembers: information will always flow up to the bridge or a secondary command center.  For the officers, this task becomes more difficult.

First, there are several crewmember classes that could be anywhere on the ship:

  • Security
  • Damage Control
  • Couriers
  • Other officers

Without broadcasting to the entire ship, it could be extremely difficult to locate these specific crewmembers in the middle of a battle for information updates or new orders.

Unconventional Enemy

The primary purpose of the Galactica was to fight the Cylons: sentient robots capable of infiltrating networked computers.  This meant that every system on the Galactica was made as basic as possible, without regard to its usability.

The Galactica’s antiquated phone system does prevent Cylon infiltration of a communications network aboard an active warship.  Nothing the phone system does requires executing outside pieces of software.

A very basic upgrade to the phone system that could provide better usability would be a near-field tag system for each crew member.  A passive near-field chip could be read by a non-networked phone terminal each time a crew member approached near the phone.  The phone could then send a basic update to a central board at the Communications Center informing the operators of where each crewmember is. Such a system would not provide an attack surface (a weakness for them to infiltrate) for the enemy, and make finding officers and crew in an emergency situation both easier and faster: major advantages for a warship.

The near field sensors would add a second benefit, in that only registered crew could access specific terminals.  As an example, the Captain and senior staff would be the only ones allowed to use the central phone system.

Brutally efficient hardware

image08

The phone system succeeds in its hardware.  Each terminal has an obvious speaker that makes a distinct sound each time the terminal is looking for a crewmember.  When the handset is in use, it is easy to tell which side is up after a very short amount of training (the cable always comes out the bottom).  

It is also obvious when the handset is active or inactive.  When a crewmember pulls the handset out of its terminal, the hardware makes a distinctive audible and physical *click* as the switch opens a channel.  The handset also slots firmly back into the terminal, making another *click* when the switch deactivates.  This is very similar to a modern-day gas pump.

With a brief amount of training, it is almost impossible to mistake when the handset activates and deactivates.

Quick Wins

For a ship built in the heat of war at a rapid pace, the designers focused on what they could design quickly and efficiently.  There is little in the way of creature comforts in the Phone interface.

Minor additions in technology or integrated functionality could have significantly improved the interface of the phone system, and may have been integrated into future ships of the Galactica’s line.  Unfortunately, we never see if the military designers of the Galactica learned from their haste.

Perimeter Fences

Jurassic_Park_Perimeter_Fences01Each of the dinosaur paddocks in Jurassic Park is surrounded by a large electric fence on a dedicated power circuit that is controlled from the Central Control Room. The fences have regular signage warning of danger…

Jurassic_Park_Perimeter_Fences04…and large lamps at the top of many towers with amber and blue lights indicating the status of the fence.

Jurassic_Park_Perimeter_Fences02 Continue reading

Little boxes on the interface

StarshipT-undocking01

After recklessly undocking we see Ibanez using an interface of…an indeterminate nature.

Through the front viewport Ibanez can see the cables and some small portion of the docking station. That’s not enough for her backup maneuver. To help her with that, she uses the display in front of her…or at least I think she does.

Undocking_stabilization

The display is a yellow wireframe box that moves “backwards” as the vessel moves backwards. It’s almost as if the screen displayed a giant wireframe airduct through which they moved. That might be useful for understanding the vessel’s movement when visual data is scarce, such as navigating in empty space with nothing but distant stars for reckoning. But here she has more than enough visual cues to understand the motion of the ship: If the massive space dock was not enough, there’s that giant moon thing just beyond. So I think understanding the vessel’s basic motion in space isn’t priority while undocking. More important is to help her understand the position of collision threats, and I cannot explain how this interface does that in any but the feeblest of ways.

If you watch the motion of the screen, it stays perfectly still even as you can see the vessel moving and turning. (In that animated gif I steadied the camera motion.) So What’s it describing? The ideal maneuver? Why doesn’t it show her a visual signal of how well she’s doing against that goal? (Video games have nailed this. The “driving line” in Gran Turismo 6 comes to mind.)

Gran Turismo driving line

If it’s not helping her avoid collisions, the high-contrast motion of the “airduct” is a great deal of visual distraction for very little payoff. That wouldn’t be interaction so much as a neurological distraction from the task at hand. So I even have to dispense with my usual New Criticism stance of accepting it as if it was perfect. Because if this was the intention of the interface, it would be encouraging disaster.

StarshipT-undocking17

The ship does have some environmental sensors, since when it is 5 meters from the “object,” i.e. the dock, a voiceover states this fact to everyone in the bridge. Note that it’s not panicked, even though that’s relatively like being a peach-skin away from a hull breach of bajillions of credits of damage. No, the voice just says it, like it was remarking about a penny it happened to see on the sidewalk. “Three meters from object,” is said with the same dispassion moments later, even though that’s a loss of 40% of the prior distance. “Clear” is spoken with the same dispassion, even though it should be saying, “Court Martial in process…” Even the tiny little rill of an “alarm” that plays under the scene sounds more like your sister hasn’t responded to her Radio Shack alarm clock in the next room rather than—as it should be—a throbbing alert.

StarshipT-undocking24

Since the interface does not help her, actively distracts her, and underplays the severity of the danger, is there any apology for this?

1. Better: A viewscreen

Starship Troopers happened before the popularization of augmented reality, so we can forgive the film for not adopting that technology, even though it might have been useful. AR might have been a lot for the film to explain to a 1997 audience. But the movie was made long after the popularization of the viewscreen forward display in Star Trek. Of course it’s embracing a unique aesthetic, but focusing on utility: Replace the glass in front of her with a similar viewscreen, and you can even virtually shift her view to the back of the Rodger Young. If she is distracted by the “feeling” of the thrusters, perhaps a second screen behind her will let her swivel around to pilot “backwards.” With this viewscreen she’s got some (virtual) visual information about collision threats coming her way. Plus, you could augment that view with precise proximity warnings, and yes, if you want, air duct animations showing the ideal path (similar to what they did in Alien).

2. VP

The viewscreen solution still puts some burden on her as a pilot to translate 2D information on the viewscreen to 3D reality. Sure, that’s often the job of a pilot, but can we make that part of the job easier? Note that Starship Troopers was also created after the popularization of volumetric projections in Star Wars, so that might have been a candidate, too, with some third person display nearby that showed her the 3D information in an augmented way that is fast and easy for her to interpret.

3. Autopilot or docking tug-drones

Yes, this scene is about her character, but if you were designing for the real world, this is a maneuver that an agentive interface can handle. Let the autopilot handle it, or adorable little “tug-boat” drones.

StarshipT-undocking25

The HoverChair Social Network

WallE-SocialNetwork03

The other major benefit to the users of the chair (besides the ease of travel and lifestyle) is the total integration of the occupant’s virtual social life, personal life, fashion (or lack-thereof), and basic needs in one device. Passengers are seen talking with friends remotely, not-so-remotely, playing games, getting updated on news, and receiving basic status updates. The device also serves as a source of advertising (try blue! it’s the new red!).

A slight digression: What are the ads there for? Considering that the Axiom appears to be an all-inclusive permanent resort model, the ads could be an attempt to steer passengers to using resources that the ship knows it has a lot of. This would allow a reprieve for heavily used activities/supplies to be replenished for the next wave of guests, instead of an upsell maneuver to draw more money from them. We see no evidence of exchange of money or other economic activity while on-board the Axiom

OK, back to the social network.

Security?

It isn’t obvious what the form of authentication is for the chairs. We know that the chairs have information about who the passenger prefers to talk to, what they like to eat, where they like to be aboard the ship, and what their hobbies are. With that much information, if there was no constant authentication, an unscrupulous passenger could easily hop in another person’s chair, “impersonate” them on their social network, and play havoc with their network. That’s not right.

It’s possible that the chair only works for the person using it, or only accesses the current passenger’s information from a central computer in the Axiom, but it’s never shown. What we do know is that the chair activates when a person is sitting on it and paying attention to the display, and that it deactivates as soon as that display is cut or the passenger leaves the chair.

We aren’t shown what happens when the passenger’s attention is drawn away from the screen, since they are constantly focused on it while the chair is functioning properly.

If it doesn’t already exist, the hologram should have an easy to push button or gesture that can dismiss the picture. This would allow the passenger to quickly interact with the environment when needed, then switch back to the social network afterwards.

And, for added security in case it doesn’t already exist, biometrics would be easy for the Axiom. Tracking the chair user’s voice, near-field chip, fingerprint on the control arm, or retina scan would provide strong security for what is a very personal activity and device. This system should also have strong protection on the back end to prevent personal information from getting out through the Axiom itself.

Social networks hold a lot of very personal information, and the network should have protections against the wrong person manipulating that data. Strong authentication can prevent both identity theft and social humiliation.

Taking the occupant’s complete attention

While the total immersion of social network and advertising seems dystopian to us (and that’s without mentioning the creepy way the chair removes a passenger’s need for most physical activity), the chair looks genuinely pleasing to its users.

They enjoy it.

But like a drug, their enjoyment comes at the detriment of almost everything else in their lives. There seem to be plenty of outlets on the ship for active people to participate in their favorite activities: Tennis courts, golf tees, pools, and large expanses for running or biking are available but unused by the passengers of the Axiom.

Work with the human need

In an ideal world a citizen is happy, has a mixture of leisure activities, and produces something of benefit to the civilization. In the case of this social network, the design has ignored every aspect of a person’s life except moment-to-moment happiness.

This has parallels in goal driven design, where distinct goals (BNL wants to keep people occupied on the ship, keep them focused on the network, and collect as much information as possible about what everyone is doing) direct the design of an interface. When goal-driven means data driven, then the data being collected instantly becomes the determining factor of whether a design will succeed or fail. The right data goals means the right design. Wrong data goals mean the wrong design.

Instead of just occupying a person’s attention, this interface could have instead been used to draw people out and introduce them to new activities at intervals driven by user testing and data. The Axiom has the information and power, perhaps even the responsibility, to direct people to activities that they might find interesting. Even though the person wouldn’t be looking at the screen constantly, it would still be a continuous element of their day. The social network could have been their assistant instead of their jailer.

One of the characters even exclaims that she “didn’t even know they had a pool!”. Indicating that she would have loved to try it, but the closed nature of the chair’s social network kept her from learning about it and enjoying it. By directing people to ‘test’ new experiences aboard the Axiom and releasing them from its grip occasionally, the social network could have acted as an assistant instead of an attention sink.

WallE-SocialNetwork05

Moment-to-moment happiness might have declined, but overall happiness would have gone way up.

The best way for designers to affect the outcome of these situations is to help shape the business goals and metrics of a project. In a situation like this, after the project had launched a designer could step in and point out those moments were a passenger was pleasantly surprised, or clearly in need of something to do, and help build a business case around serving those needs.

The obvious moments of happiness (that this system solves for so well) could then be augmented by serendipitous moments of pleasure and reward-driven workouts.

We must build products for more than just fleeting pleasure

WallE-SocialNetwork09

As soon as the Axiom lands back on Earth, the entire passenger complement leaves the ship (and the social network) behind.

It was such a superficial pleasure that people abandoned it without hesitation when they realized that there was something more rewarding to do. That’s a parallel that we can draw to many current products. The product can keep attention for now, but something better will come along and then their users will abandon them.

WallE-SocialNetwork07

A company can produce a product or piece of software that fills a quick need and initially looks successful. But, that success falls apart as soon as people realize that they have larger and tougher problems that need solving.

Ideally, a team of designers at BNL would have watched after the initial launch and continued improving the social network. By helping people continue to grow and learn new skills, the social network could have kept the people aboard the Axiom it top condition both mentally and physically. By the time Wall-E came around, and life finally began to return to Earth, the passengers would have been ready to return and rebuild civilization on their own.

To the designers of a real Axiom Social Network: You have the chance to build a tool that can save the world.

We know you like blue! Now it looks great in Red!

The Hover Chair

WallE-HoverChair05

The Hover Chair is a ubiquitous, utilitarian, all-purpose assisting device. Each passenger aboard the Axiom has one. It is a mix of a beach-side deck chair, fashion accessory, and central connective device for the passenger’s social life. It hovers about knee height above the deck, providing a low surface to climb into, and a stable platform for travel, which the chair does a lot of.

A Universal Wheelchair

We see that these chairs are used by everyone by the time that Wall-E arrives on the Axiom. From BNL’s advertising though, this does not appear to be the original. One of the billboards on Earth advertising the Axiom-class ships shows an elderly family member using the chair, allowing them to interact with the rest of the family on the ship without issue. In other scenes, the chairs are used by a small number of people relaxing around other more active passengers.

At some point between the initial advertising campaign and the current day, use went from the elderly and physically challenged, to a device used 24/7 by all humans on-board the Axiom. This extends all the way down to the youngest children seen in the nursery, though they are given modified versions to more suited to their age and disposition. BNL shows here that their technology is excellent at providing comfort as an easy choice, but that it is extremely difficult to undo that choice and regain personal control.

But not a perfect interaction

Continue reading

Otto’s Manual Control

WallE-Otto02

WallE-Otto06

When it refused to give up authority, the Captain wrested control of the Axiom from the artificial intelligence autopilot, Otto. Otto’s body is the helm wheel of the ship and fights back against the Captain. Otto wants to fulfil BNL’s orders to keep the ship in space. As they fight, the Captain dislodges a cover panel for Otto’s off-switch. When the captain sees the switch, he immediately realizes that he can regain control of the ship by deactivating Otto. After fighting his way to the switch and flipping it, Otto deactivates and reverts to a manual control interface for the ship.

The panel of buttons showing Otto’s current status next to the on/off switch deactivates half its lights when the Captain switches over to manual. The dimmed icons are indicating which systems are now offline. Effortlessly, the captain then returns the ship to its proper flight path with a quick turn of the controls.

One interesting note is the similarity between Otto’s stalk control keypad, and the keypad on the Eve Pod. Both have the circular button in the middle, with blue buttons in a semi-radial pattern around it. Given the Eve Pod’s interface, this should also be a series of start-up buttons or option commands. The main difference here is that they are all lit, where the Eve Pod’s buttons were dim until hit. Since every other interface on the Axiom glows when in use, it looks like all of Otto’s commands and autopilot options are active when the Captain deactivates him.

A hint of practicality…

The panel is in a place that is accessible and would be easily located by service crew or trained operators. Given that the Axiom is a spaceship, the systems on board are probably heavily regulated and redundant. However, the panel isn’t easily visible thanks to specific decisions by BNL. This system makes sense for a company that doesn’t think people need or want to deal with this kind of thing on their own.

Once the panel is open, the operator has a clear view of which systems are on, and which are off. The major downside to this keypad (like the Eve Pod) is that the coding of the information is obscure. These cryptic buttons would only be understandable for a highly trained operator/programmer/setup technician for the system. Given the current state of the Axiom, unless the crew were to check the autopilot manual, it is likely that no one on board the ship knows what those buttons mean anymore.

WallE-Otto03

Thankfully, the most important button is in clear English. We know English is important to BNL because it is the language of the ship and the language seen being taught to the new children on board. Anyone who had an issue with the autopilot system and could locate the button, would know which button press would turn Otto off (as we then see the Captain immediately do).

Considering that Buy-N-Large’s mission is to create robots to fill humans’ every need, saving them from every tedious or unenjoyable job (garbage collecting, long-distance transportation, complex integrated systems, sports), it was both interesting and reassuring to see that there are manual over-rides on their mission-critical equipment.

…But hidden

The opposite situation could get a little tricky though. If the ship was in manual mode, with the door closed, and no qualified or trained personnel on the bridge, it would be incredibly difficult for them to figure out how to physically turn the ship back to auto-pilot. A hidden emergency control is useless in an emergency.

Hopefully, considering the heavy use of voice recognition on the ship, there is a way for the ship to recognize an emergency situation and quickly take control. We know this is possible because we see the ship completely take over and run through a Code Green procedure to analyze whether Eve had actually returned a plant from Earth. In that instance, the ship only required a short, confused grunt from the Captain to initiate a very complex procedure.

Security isn’t an issue here because we already know that the Axiom screens visitors to the bridge (the Gatekeeper). By tracking who is entering the bridge using the Axiom’s current systems, the ship would know who is and isn’t allowed to activate certain commands. The Gatekeeper would either already have this information coded in, or be able to activate it when he allowed people into the bridge.

For very critical emergencies, a system that could recognize a spoken ‘off’ command from senior staff or trained technicians on the Axiom would be ideal.

Anti-interaction as Standard Operating Procedure

WallE-Otto05

The hidden door, and the obscure hard-wired off button continue the mission of Buy-N-Large: to encourage citizens to give up control for comfort, and make it difficult to undo that decision. Seeing as how the citizens are more than happy to give up that control at first, it looks like profitable assumption for Buy-N-Large, at least in the short term. In the long term we can take comfort that the human spirit–aided by an adorable little robot–will prevail.

So for BNL’s goals, this interface is fairly well designed. But for the real world, you would want some sort of graceful degradation that would enable qualified people to easily take control in an emergency. Even the most highly trained technicians appreciate clearly labeled controls and overrides so that they can deal directly with the problem at hand rather than fighting with the interface.