Bulkhead Doors

image09

At every major intersection, and at the entrance to each room, the Battlestar Galactica has very large pressure doors.  These doors each have a handle and a large wheel on each side.  During regular operation crewmembers open the door with the handle and close it firmly, but do not spin the wheel.  Occasionally, we see crew using the wheel as a leverage point to close the door.

 

Sealing it off

We never directly see a crewmember spin the wheel on the door after it closes.  While Chief Tyrol is acting as head of damage control, he orders all bulkheads in a section of the ship sealed off.  This order is beyond the typical door closing that we witness day-to-day.

image14

This implies that the door has three modes: Open, Closed, and Sealed.

image08

Crewmembers could use the door most of their day in an open or closed mode, where an easy pull of the handle unlatches the door and allows them to enter or leave quickly.  In an emergency, a closed door could be sealed by spinning the valve wheel on one side of the door.

 

Danger?

As with other parts of the Galactica, the doors are completely manual, and cannot be activated remotely. (Because Cylon hacking made them go network-less.) Someone has to run up to the door in an emergency and seal it off.

One worry is that, because there is a valve wheel on both sides, an untrained crewmember might panic and try to unseal the door by turning it in the wrong direction.  This would endanger the entire crew.

image13  image10

The other worry is that the valve spins along a single axis (we see no evidence either way during the show), requiring the crew to know which side of the door they were on to seal it against a vacuum.  “Righty Tighty, Lefty Loosey” would fail in this instance, and might cause hesitation or accidental unsealing in an actual emergency.

Ideally, the doors would have wheels that spun identically on either side, so that a clockwise spin always sealed the door, and a counter-clockwise spin always unsealed it.

image15

Current water-tight doors have two sides, the ‘important’ side and the ‘unimportant’ side.  The important side faces towards the ‘center’ of the vessel, or the core of the larger block of the ship, and can be sealed off quickly from that side with a wheel and heavy ‘dogs’.

Weathertight doors have a handle-latch on both sides that is connected (much like a doorknob), and can seal/unseal the door from either side.

If there is a technical limitation to that mechanism (unlikely, but possible), then a large and obvious graphic on the door (a clockwise or counterclockwise arrow) could serve to remind the crew which direction of turn sealed the door.  In this case, sealing the door is the primary action to call out because it is the action done under a panic situation, and the action most easily forgotten in the heat of the moment.

Otherwise, the doors could be a danger to the crew: the crew on the ‘safe’ side could seal the door against depressurization, but crew on the ‘unsafe’ side might try to unseal it to save themselves in a panic.

Air pressure might keep the door properly closed in this instance, but it is still a risk.

 

Effective?

image12

We see during the damage control incident that the doors are quickly closed and sealed by the crew, even in an emergency, making the rest of the ship airtight.  This either shows that the doors are effective at their job, or the crew is very well trained for such a situation.

Like the rest of the Galactica, the technology relies on people to work.  A couple hints or minor tweaks to that technology could make the crew’s lives much easier without putting them at danger from the Cylons or the empty void of space.

Colonial One

image04

Colonial One is a luxury passenger liner in commercial service until the war with the Cylons breaks out.  The captain and co-pilot are not military pilots, and most passengers are dignitaries or VIPs visiting the Galactica for the unveiling of it as a museum.

Compared to military cockpits and the CIC aboard the Galactica, Colonial One’s cockpit has simple controls and an unsophisticated space-borne sensor system.  Also unlike the Galactica or the Raptors, no one on Colonial One calls their space-borne sensor system the “Dradis”.  At the center of each control console is a large gimbal-based horizon indicator.

image07The sensors show a simple 2-d representation of local space, with nearby contacts indicated as white dots.  There is no differentiation between ‘enemy’ and ‘friendly’ contacts.  Likewise, the image of a Cylon missile (shown above) is the same indicator as other ships.  There is no clear explanation of what the small white dots on the background of the image are, or what the lines indicate.

When the Cylon fighters show up, the crew has some unknown way besides this screen of knowing the Cylons have just jumped into contact range, and that they have launched missiles at Colonial One.  How the crew determines this isn’t shown, but both the crew and Apollo are confident that the assessment is correct.

image05

When Laura Rosilyn tells the crew to send a message on a specific frequency before the missile attack, the crew uses the same keypad to send alpha-numeric signals over a radio/faster-than-light (FTL) link as to enter information into their flight computers.  The FTL link appears to connect every planet in the Colonies together in real time: we don’t get any sense of delay between the attacks happening and the entire civilization reacting to it in real time.

The largest usability concern here is Mode Switching, and making it clear whether the crew is entering information into the ship or into the radio.  Given that we see the crew interact most with the ship itself, the following procedure would make the most sense:

  1. Entering information into the ship is the primary ‘mode’
  2. An explicit command to switch over to the radio link.
  3. Crew enters the given information into the link
  4. On ‘enter’, the interface flips back over to entering information into the ship.

With a larger budget, the Dradis is a better system (at least with the improvements installed)

Other Systems

A large amount of space inside the cockpit is given over to communication controls and a receiver station.  At the receiver station, Colonial One has a small printer attached to an automatic collector that prints off broadcast messages.  The function and placement of the printer appears similar to weather printers on modern passenger jets.

image06

The cockpit is very utilitarian, and the controls look well used.  These are robust systems and look like they have been in place for a while.  Despite the luxury associated with the passenger compartment, the crew have been granted no special luxuries or obvious assisting equipment to make their job more comfortable.

If we look at a current (or, up until very recently current) pattern: the Space Shuttle has a very similar layout.  It is intended to also enter the atmosphere, which Colonial One is shown with the equipment to do, and maintains a 2.5D movement concept.  Given that it’s a commercial ship with direct paths to follow, Colonial One does not need the complicated controls – that are shown to be very difficult to master – that are present on ships like the Viper.

Overall, a solid pattern

In-universe, this ship was not designed for combat, and is woefully unprepared for it when it arrives.  The sensor system and the controls appear specialized for the job of ferrying high-paying customers from one planet to another through friendly space.  Other ships also have the same level of manual controls and physical switches in the cockpit, though it is impossible to tell whether this is because Colonial One was built in the same era as the Galactica, or whether the builders wanted extra reliability in the controls than ‘modern’ electronics provided.

As long as the pilots are as well trained as current-day commercial pilots, the banks of controls would provide solid spatial grouping and muscle memory.  There might be some room to shrink the number of controls or group them better, but we lack the context to dig into that particular issue.

One minor fix would be the possibility of mode errors for the keypad.  It is not obvious when the crew changes from “I want to enter information into Colonial One to change operating parameters” and “I want to send a message to someone else”.  A clear way to indicate that the keyboard is sending information to the ship, compared to sending information to the radio system, would clear up the possibility of a mode-switch error.  Common options could be:

  • A large switch close by that changed the color of the lights
  • A bi-directional light with labels on which mode it’s in
  • or distinct separation between the Pilot’s keyboard and the Co-pilot’s keyboard

Of the three, a clear distinction between pilot’s keyboard and co-pilot’s keyboard would be the most secure; provided that there was a switch in case of emergency.

The Colonial One copies many interface patterns from modern airliners.  Since the airline industry has one of the best and most sophisticated UI design in practice right now, there are very few obvious recommendations to make, and credit should be given for how realistic it looks.

Viper Controls

image03

The Viper is the primary space fighter of the Colonial Fleet.  It comes in several varieties, from the Mark II (shown above), to the Mark VII (the latest version).  Each is made for a single pilot, and the controls allow the pilot to navigate short distances in space to dogfight with enemy fighters.

image09

Mark II Viper Cockpit

The Mark II Viper is an analog machine with a very simple Dradis, physical gauges, and paper flight plans.  It is a very old system.  The Dradis sits in the center console with the largest screen real-estate.  A smaller needle gauge under the Dradis shows fuel levels, and a standard joystick/foot pedal system provides control over the Viper’s flight systems.

image06

Mark VII Viper Cockpit

The Viper Mk VII is a mostly digital cockpit with a similar Dradis console in the middle (but with a larger screen and more screen-based controls and information).  All other displays are digital screens.  A few physical buttons are scattered around the top and bottom of the interface.  Some controls are pushed down, but none are readable.  Groups of buttons are titled with text like “COMMS CIPHER” and “MASTER SYS A”.

Eight buttons around the Dradis console are labeled with complex icons instead of text.

image07 image08

When the Mk VII Vipers encounter Cylons for the first time, the Cylons use a back-door computer virus to completely shut down the Viper’s systems.  The screens fuzz out in the same manner as when Apollo gets caught in an EMP burst.

The Viper Mk VII is then completely uncontrollable, and the pilot’s’ joystick-based controls cease to function.

Overall, the Viper Mk II is set up similarly to a WWII P-52 Mustang or early production F-15 Eagle, while the Viper Mk VII is similar to a modern-day F-16 Falcon or F-22 Raptor .

 

Usability Concerns

The Viper is a single seat starfighter, and appears to excel in that role.  The pilots focus on their ship, and the Raptor pilots following them focus on the big picture.  But other items, including color choice, font choice, and location are an issue.

Otherwise, Items appear a little small, and it requires a lot of training to know what to look for on the dashboards. Also, the black lines radiating from the large grouper labels appear to go nowhere and provide no extra context or grouping.  Additionally, the controls (outside of the throttle and joystick) require quite a bit of reach from the seat.

Given that the pilots are accelerating at 9+ gs, reaching a critical control in the middle of a fight could be difficult.  Hopefully, the designers of the Vipers made sure that ‘fighting’ controls are all within arms reach of the seat, and that the controls requiring more effort are secondary tasks.

Similarly, all-caps text is the hardest to read at a glance, and should be avoided for interfaces like the Viper that require quick targeting and actions in the middle of combat.  The other text is very small, and it would be worth doing a deeper evaluation in the cockpit itself to determine if the font size is too small to read from the seat.

If anyone reading this blog has an accurate Viper cockpit prop, we’d be happy to review it! 

Fighter pilots in the Battlestar Galactica universe have quick reflexes, excellent vision, and stellar training.  They should be allowed to use all of those abilities for besting Cylons in a dogfight, instead of being forced to spend time deciphering their Viper’s interface.

Damage Control

image04

After the Galactica takes a nuclear missile hit to its port launch bay, part of the CIC goes into Damage Control mode.  Chief Tyrol and another officer take up a position next to a large board with a top-down schematic of the Galactica.  The board has various lights in major sections of the ship representing various air-tight modules in the ship.  

image03

After the nuclear hit, the port launch bay is venting to space, bulkheads are collapsing in due to the damage, and there are uncontrolled fires.  In those blocks, the lights blink red.

image05

Colonel Tigh orders the red sections sealed off and vented to space.  When Tigh turns his special damage control key in the “Master Vent” control, the lights disappear until the areas are sealed off again.  When the fires go out and the master vents are closed, the lights return to a green state.

On the board then, the lights have three states:

  • Green: air-tight, healthy
  • Blinking Red: Fire
  • Off: Intentional Venting

There does not appear to be any indications of the following states:

  • Damage Control Teams in the area
  • Open to space/not air-tight

We also do not see how sections are chosen to be vented.

Why it works

The most effective pieces here are the red lights and the “vent” key.  Chief Tyrol has a phone to talk to local officers managing the direct crisis, and can keep a basic overview of the problems on the ship (with fire being the most dangerous) with the light board.  The “vent” key is likewise straightforward, and has a very clear “I’m about to do something dangerous” interaction.

What is confusing are the following items:

  • How does Chief Tyrol determine which phone/which officer he’s calling?
  • Who is the highest ranking officer in the area?
  • How does the crew determine which sections they’re going to vent?
  • How do they view more complex statuses besides “this section is on fire”?

As with other systems on the Galactica, the board could be improved with the use of more integrated systems like automatic sensors, display screens to cycle through local cameras, and tracking systems for damage control crew.  Also as with other systems on the Galactica, these were deliberate omissions to prevent the Cylons from being able to control the Galactica.

One benefit of the simplified system is that it keeps Chief Tyrol thinking of the high-level problem instead of trying to micromanage his local damage control teams.  With proper training, local teams with effective leadership and independent initiative are more effective than a large micro-managed organization.  Chief Tyrol can focus on the goals he needs his teams to accomplish:

  • Putting out fires
  • Evacuating local crew
  • Protecting the ship from secondary explosions

and allow his local teams to focus on the tactics of each major goal.

What it’s missing

A glaring omission here is the lack of further statuses.  In the middle of a crisis, Chief Tyrol could easily lose track of individual teams on his ship.  He knows the crews that are in the Port Hangar Bay, but we never hear about the other damage control teams and where they are.  Small reminders or other status indicators would keep the Chief from needing to remember everything that was happening across the ship.  Even a box of easily-grabbed sticky notes or a grease-pen board would help here and be very low-tech.

Possible indicators include:

  • Secondary lights in each section when a damage control crew was in the area
  • A third color indicator (less optimal, but would take up less space on the board)
  • A secondary board with local reports of damage crew location and progress
  • Radiation alarms
  • Extreme temperatures
  • Low oxygen states
  • High oxygen states (higher fire risk)
  • Structural damage

It is also possible that Colonel Tigh would have taken the local crews into consideration when making his decision if he could have seen where they were for himself on the board, instead of simply hearing Chief Tyrol’s protests about their existence. Reducing feedback loops can make decision making less error prone and faster, but can admittedly introduce single points of failure.

Colonel Tigh and Chief Tyrol are able to get control of the situation with the tools at hand, but minor upgrades could have lessened the stress of the situation and allowed both of them to think clearer before jumping to decisions.  Better systems would have given them all the information they needed, but the Galactica’s purpose limited them for the benefit of the entire ship.

FTL – Engine Analysis

Desktop_2014_06_20_17_25_34_414

The FTL Jump process on the Galactica has several safeguards, all appropriate for a ship of that size and an action of that danger (late in the series, we see that an inappropriate jump can cause major damage to nearby objects).  Only senior officers can start the process, multiple teams all sign off on the calculations, and dedicated computers are used for potentially damaging computations.

Even the actual ‘jump’ requires a two stage process with an extremely secure key and button combination.  It is doubtful that Lt. Gaeta’s key could be used on any other ship aside from the Galactica.

The process is so effective, and the crew is so well trained at it, that even after two decades of never actually using the FTL system, the Galactica is able to make a pinpoint jump under extreme duress (the beginning of human extinction).

Difficult Confirmation

image02

The one apparent failure in this system is the confirmation process after the FTL jump.  Lt. Gaeta has to run all the way across the CIC and personally check a small screen with less than obvious information.

Of the many problems with the nav’s confirmation screen, three stand out:

  • It is a 2d representation of 3d space, without any clear references to how information has been compacted
  • There are no ‘local zero’ showing the system’s plane or relative inclination of orbits
  • No labels on data

Even the most basic orbital navigation system has a bit more information about Apogee, Perigee, relative orbit, and a gimbal reading. Compare to this chart from the Kerbal Space Program:

image03

(from http://blog.asgaard.co.uk/t/gaming and Kerbal Space Program)

The Galactica would need at least this much information to effectively confirm their location.  For Lt. Gaeta, this isn’t a problem because of his extensive training and knowledge of the Galactica.  

But the Galactica is a warship and would be expected to experience casualties during combat.  Other navigation officers and crew may not be as experienced or have the same training as Lt. Gaeta.  In a situation where he is incapacitated and it falls to a less experienced member of the crew, an effective visual display of location and vector is vital.

Simplicity isn’t always perfect

This is an example of where a bit more information in the right places can make an interface more legible and understandable.  Some information here looks useless, but may be necessary for the Galactica’s navigation crew.  With the extra information, this display could become useful for crew other than Lt. Gaeta.

Grabby hologram

After Pepper tosses off the sexy bon mot “Work hard!” and leaves Tony to his Avengers initiative homework, Tony stands before the wall-high translucent displays projected around his room.

Amongst the videos, diagrams, metadata, and charts of the Tesseract panel, one item catches his attention. It’s the 3D depiction of the object, the tesseract itself, one of the Infinity Stones from the MCU. It is a cube rendered in a white wireframe, glowing cyan amidst the flat objects otherwise filling the display. It has an intense, cold-blue glow at its center.  Small facing circles surround the eight corners, from which thin cyan rule lines extend a couple of decimeters and connect to small, facing, inscrutable floating-point numbers and glyphs.

Avengers_PullVP-02.png

Wanting to look closer at it, he reaches up and places fingers along the edge as if it were a material object, and swipes it away from the display. It rests in his hand as if it was a real thing. He studies it for a minute and flicks his thumb forward to quickly switch the orientation 90° around the Y axis.

Then he has an Important Thought and the camera cuts to Agent Coulson and Steve Rogers flying to the helicarrier.

So regular readers of this blog (or you know, fans of blockbuster sci-fi movies in general) may have a Spidey-sense that this feels somehow familiar as an interface. Where else do we see a character grabbing an object from a volumetric projection to study it? That’s right, that seminal insult-to-scientists-and-audiences alike, Prometheus. When David encounters the Alien Astrometrics VP, he grabs the wee earth from that display to nuzzle it for a little bit. Follow the link if you want that full backstory. Or you can just look and imagine it, because the interaction is largely the same: See display, grab glowing component of the VP and manipulate it.

Prometheus-229 Two anecdotes are not yet a pattern, but I’m glad to see this particular interaction again. I’m going to call it grabby holograms (capitulating a bit on adherence to the more academic term volumetric projection.) We grow up having bodies and moving about in a 3D world, so the desire to grab and turn objects to understand them is quite natural. It does require that we stop thinking of displays as untouchable, uninterruptable movies and more like toy boxes, and it seems like more and more writers are catching on to this idea.

More graphics or more information?

Additionally,  the fact that this object is the one 3D object in its display is a nice affordance that it can be grabbed. I’m not sure whether he can pull the frame containing the JOINT DARK ENERGY MISSION video to study it on the couch, but I’m fairly certain I knew that the tesseract was grabbable before Tony reached out.

On the other hand, I do wonder what Tony could have learned by looking at the VP cube so intently. There’s no information there. It’s just a pattern on the sides. The glow doesn’t change. The little glyph sticks attached to the edges are fuigets. He might be remembering something he once saw or read, but he didn’t need to flick it like he did for any new information. Maybe he has flicked a VP tesseract in the past?

Augmented “reality”

Rather, I would have liked to have seen those glyph sticks display some useful information, perhaps acting as leaders that connected the VP to related data in the main display. One corner’s line could lead to the Zero Point Extraction chart. Another to the lovely orange waveform display. This way Tony could hold the cube and glance at its related information. These are all augmented reality additions.

Augmented VP

Or, even better, could he do some things that are possible with VPs that aren’t possible with AR. He should be able to scale it to be quite large or small. Create arbitrary sections, or plan views. Maybe fan out depictions of all objects in the SHIELD database that are similarly glowy, stone-like, or that remind him of infinity. Maybe…there’s…a…connection…there! Or better yet, have a copy of JARVIS study the data to find correlations and likely connections to consider. We’ve seen these genuine VP interactions plenty of places (including Tony’s own workshop), so they’re part of the diegesis.

Avengers_PullVP-05.pngIn any case, this simple setup works nicely, in which interaction with a cool media helps underscore the gravity of the situation, the height of the stakes. Note to selves: The imperturbable Tony Stark is perturbed. Shit is going to get real.