Mission Briefing

Once the Prometheus crew has been fully revived from their hypersleep, they gather in a large gymnasium to learn the details of their mission from a prerecorded volumetric projection. To initiate the display, David taps the surface of a small tablet-sized handheld device six times, and looks up. A prerecorded VP of Peter Weyland appears and introduces the scientists Shaw and Holloway.

This display does not appear to be interactive. Weyland does mention and gesture toward Shaw and Holloway in the audience, but they could have easily been in assigned seats.

Cue Rubik’s Space Cube

After his introduction, Holloway places an object on the floor that looks like a silver Rubik’s Cube with a depressed black button in the center-top square.


He presses a middle-edge button on the top, and the cube glows and sings a note. Then a glowing-yellow “person” icon appears, glowing, at the place he touched, confirming his identity and that it’s ready to go.

He then presses an adjacent corner button. Another glowing-yellow icon appears underneath his thumb, this one a triangle-within-a-triangle, and a small projection grows from the side. Finally, by pressing the black button, all of the squares on top open by hinged lids, and the portable projection begins. A row of 7 (or 8?) “blue-box” style volumetric projections appear, showing their 3D contents with continuous, slight rotations.

Gestural control of the display

After describing the contents of each of the boxes, he taps the air towards either end of the row (there is a sparkle-sound to confirm the gesture) and he brings his middle fingers together like a prayer position. In response, the boxes slide to a center as a stack.

He then twists his hands in opposite directions, keeping the fingerpads of his middle fingers in contact. As he does this, the stack merges.


Then a forefinger tap summons an overlay that highlights a star pattern on the first plate. A middle finger swipe to the left moves the plate and its overlay off to the left. The next plate automatically highlights its star pattern, and he swipes it away. Next, with no apparent interaction, the plate dissolves in a top-down disintegration-wind effect, leaving only the VP spheres that illustrate the star pattern. These grow larger.

Halloway taps the topmost of these spheres, and the VP zooms through intersteller space to reveal an indistinct celestial sphere. He then taps the air again (nothing in particular is beneath his finger) and the display zooms to a star. Another tap zooms to a VP of LV-223.



After a beat of about 9 seconds, the presentation ends, and the VP of LV-223 collapses back into its floor cube.

Evaluating the gestures

In Chapter 5 of Make It So we list the seven pidgin gestures that Hollywood has evolved. The gestures seen in the Mission Briefing confirm two of these: Push to Move and Point to Select, but otherwise they seem idiosyncratic, not matching other gestures seen in the survey.

That said, the gestures seem sensible. On tapping the “bookends” of the blue boxes, Holloway’s finger pads come to represent the extents of the selection, so bringing them together is a reasonable gesture to indicate stacking. The twist gesture seems to lock the boxes in place, to break the connection between them and his fingertips. This twist gesture turns his hand like a key in a lock, so has a physical analogue.

It’s confusing that a tap would perform four different actions (highlight star patterns in the blue boxes, zoom to the celestial sphere, zoom to star, zoom to LV-223) but there is no indication that this is a platform for manipulating VPs as much as it is a presentation software. With this in mind he could arbitrarily assign any gesture to simply “advance the slide.”

Floating-pixel displays

In other posts we compared the human and alien VPs of Prometheus. They were visually distinct from each other, with the alien “glowing pollen” displays being unique to this movie.

There is a style of human display in Prometheus that looks similar to the pollen. Since the users of these displays don’t perceive these points in 3D, it’s more precise to call it a floating-pixel style. These floating-pixel displays appear in three places.

  • David’s Neurovisor for peering into the dreams of the hypersleeping Shaw. (Note this may be 3D for him.)
  • The landing-sequence topography displays
  • The science lab scanner, used on the alien head

There is no diegetic reason offered in the movie for the appearance of an alien 3D display technology in human 2D systems. When I started to try and explain it, it quickly drifted away from interaction design and into fan theory, so I have left it as an exercise for the reader. But there remains a question about the utility of this style.

Poor cues for understanding 3D

Floating, glowing points are certainly novel to our survey as a way to describe 3D shapes for users. And in the case of the alien pollen, it makes some sense. Seeing these in the world, our binocular vision would help us understand the relationships of each point as well as the gestalt, like walking around a Christmas tree at night.

But in 2D, simple points are not ideal for understanding 3D surfaces. Especially when the pixels are all the same apparent size. We normally use the small bits of scale to help us understand an object’s relative distance from us. Though the shape can be kind-of inferred through motion, it still creates a great deal of visual noise. It also hurts when the points are too far apart. It doesn’t give us a gestalt sense of surface.

I couldn’t find any scientific studies of the readability of this style, this is my personal take on it. But we also can look to the real world, namely to the history of maps, where cartographers have wrestled with similar problems to show topography. Centuries of their trial-and-error have resulted in four primary techniques for describing 3D shapes on a 2D surface: hachures, contour lines, hypsometric tints, and shaded relief.

(images from http://www.siskiyous.edu/shasta/map/map/)
(images from http://www.siskiyous.edu/shasta/map/map/)

These styles utilize lines, shades, and colors to describe topography, and notably not points. Even modern 3D modeling software uses tessellated wireframes instead of floating points as a lightweight rendering technique. To my knowledge, only geographic information systems display anything similar, and that’s only when the user wants to see actual data points.

These anecdotal bits of evidence combine with my observations of these interfaces in Prometheus to convince me that while it’s stylistically unique (and therefore useful to the filmmakers), it’s seriously suboptimal for real-world adoption.

Alien VPs

In the volumetric projection chapter of Make It So, we note that sci-fi makers take pains to distinguish the virtual from the real most often with a set of visual treatments derived from the “Pepper’s Ghost” parlor trick, augmented with additional technology cues: translucency, a blue tint, glowing whites, supersaturated colors for wireframed objects, clear pixels and/or flicker, with optional projection rays.

Prometheus has four types of VPs that adhere to this style in varying degrees. Individual displays (with their interactions) are discussed in other posts. This collection of posts compares their styles. This particular post describes the alien VPs.


The two alien VPs are quite different from the human VPs in appearance and behavior. The first thing to note is that they adhere to the Pepper’s Ghost style more readily, with glowing blue-tinted whites and transparency. Beyond that they differ in precision and implied technology.

Precision VPs

The first style of alien VP appears in the bridge of the alien vessel, where projection technology can be built into the architecture. The resolution is quite precise. When the grapefruit-sized Earth gets close to the camera in one scene, it appears to have infinite resolution, even though this is some teeny tiny percentage of the whole display.


Glowing Pollen

The other alien VP tech is made up of small, blue-white voxels that float, move in space, obey some laws of physics, and provide a crude level of resolution. These appear in the caves of the alien complex where display tech is not present in the walls, and again as “security footage” in the bridge of the alien ship. Because the voxels obey some laws of physics, it’s easier to think of them as glowing bits of pollen.

Prometheus-211 Prometheus-140

Pollen behavior

These voxels appear to not be projections of light in space, but actual motes that float through the air. When David activates the “security footage” in the alien complex, a wave of this pollen appears and flows past him. It does not pass through him, but collides with him, each collided mote taking a moment to move around him and regain its roughly-correct position in the display. (How it avoids getting in his mouth is another question entirely.) The motes even produce a gust of wind that disturb David’s bleached coif.

Pollen inaccuracy

The individual lines of pollen follow smooth arcs through the air, but lines appear to be slightly off from one another.


This style is beautiful and unique, and conveys a 3D display technology that can move to places even where there’s not a projector in line of sight. The sci-fi makers of this speculative technology use this inaccuracy to distinguish it from other displays. But if a precise understanding of the shapes being described is useful to its viewers, of course it would be better if the voxels were more precisely positioned in space. That’s a minor critique. The main critique of this display is when it gets fed back into the human displays as an arbitrary style, as I’ll discuss in the next post about the human-tech, floating-pixel displays.