Floating-pixel displays

In other posts we compared the human and alien VPs of Prometheus. They were visually distinct from each other, with the alien “glowing pollen” displays being unique to this movie.

There is a style of human display in Prometheus that looks similar to the pollen. Since the users of these displays don’t perceive these points in 3D, it’s more precise to call it a floating-pixel style. These floating-pixel displays appear in three places.

  • David’s Neurovisor for peering into the dreams of the hypersleeping Shaw. (Note this may be 3D for him.)
  • The landing-sequence topography displays
  • The science lab scanner, used on the alien head
Prometheus-007
Prometheus-096
Prometheus-165

There is no diegetic reason offered in the movie for the appearance of an alien 3D display technology in human 2D systems. When I started to try and explain it, it quickly drifted away from interaction design and into fan theory, so I have left it as an exercise for the reader. But there remains a question about the utility of this style.

Poor cues for understanding 3D

Floating, glowing points are certainly novel to our survey as a way to describe 3D shapes for users. And in the case of the alien pollen, it makes some sense. Seeing these in the world, our binocular vision would help us understand the relationships of each point as well as the gestalt, like walking around a Christmas tree at night.

But in 2D, simple points are not ideal for understanding 3D surfaces. Especially when the pixels are all the same apparent size. We normally use the small bits of scale to help us understand an object’s relative distance from us. Though the shape can be kind-of inferred through motion, it still creates a great deal of visual noise. It also hurts when the points are too far apart. It doesn’t give us a gestalt sense of surface.

I couldn’t find any scientific studies of the readability of this style, this is my personal take on it. But we also can look to the real world, namely to the history of maps, where cartographers have wrestled with similar problems to show topography. Centuries of their trial-and-error have resulted in four primary techniques for describing 3D shapes on a 2D surface: hachures, contour lines, hypsometric tints, and shaded relief.

(images from http://www.siskiyous.edu/shasta/map/map/)
(images from http://www.siskiyous.edu/shasta/map/map/)

These styles utilize lines, shades, and colors to describe topography, and notably not points. Even modern 3D modeling software uses tessellated wireframes instead of floating points as a lightweight rendering technique. To my knowledge, only geographic information systems display anything similar, and that’s only when the user wants to see actual data points.

These anecdotal bits of evidence combine with my observations of these interfaces in Prometheus to convince me that while it’s stylistically unique (and therefore useful to the filmmakers), it’s seriously suboptimal for real-world adoption.

Advertisements

Alien VPs

In the volumetric projection chapter of Make It So, we note that sci-fi makers take pains to distinguish the virtual from the real most often with a set of visual treatments derived from the “Pepper’s Ghost” parlor trick, augmented with additional technology cues: translucency, a blue tint, glowing whites, supersaturated colors for wireframed objects, clear pixels and/or flicker, with optional projection rays.

Prometheus has four types of VPs that adhere to this style in varying degrees. Individual displays (with their interactions) are discussed in other posts. This collection of posts compares their styles. This particular post describes the alien VPs.

Prometheus-223

The two alien VPs are quite different from the human VPs in appearance and behavior. The first thing to note is that they adhere to the Pepper’s Ghost style more readily, with glowing blue-tinted whites and transparency. Beyond that they differ in precision and implied technology.

Precision VPs

The first style of alien VP appears in the bridge of the alien vessel, where projection technology can be built into the architecture. The resolution is quite precise. When the grapefruit-sized Earth gets close to the camera in one scene, it appears to have infinite resolution, even though this is some teeny tiny percentage of the whole display.

Prometheus-228

Glowing Pollen

The other alien VP tech is made up of small, blue-white voxels that float, move in space, obey some laws of physics, and provide a crude level of resolution. These appear in the caves of the alien complex where display tech is not present in the walls, and again as “security footage” in the bridge of the alien ship. Because the voxels obey some laws of physics, it’s easier to think of them as glowing bits of pollen.

Prometheus-211 Prometheus-140

Pollen behavior

These voxels appear to not be projections of light in space, but actual motes that float through the air. When David activates the “security footage” in the alien complex, a wave of this pollen appears and flows past him. It does not pass through him, but collides with him, each collided mote taking a moment to move around him and regain its roughly-correct position in the display. (How it avoids getting in his mouth is another question entirely.) The motes even produce a gust of wind that disturb David’s bleached coif.

Pollen inaccuracy

The individual lines of pollen follow smooth arcs through the air, but lines appear to be slightly off from one another.

Prometheus-215

This style is beautiful and unique, and conveys a 3D display technology that can move to places even where there’s not a projector in line of sight. The sci-fi makers of this speculative technology use this inaccuracy to distinguish it from other displays. But if a precise understanding of the shapes being described is useful to its viewers, of course it would be better if the voxels were more precisely positioned in space. That’s a minor critique. The main critique of this display is when it gets fed back into the human displays as an arbitrary style, as I’ll discuss in the next post about the human-tech, floating-pixel displays.