UX of Speculative Brain-Computer Inputs

So much of the technology in Black Panther appears to work by mental command (so far: Panther Suit 2.0, the Royal Talon, and the vibranium sand tables) that…

  • before we get into the Kimoyo beads, or the Cape Shields, or the remote driving systems…
  • before I have to dismiss these interactions as “a wizard did it” style non-designs
  • before I review other brain-computer interfaces in other shows…

…I wanted check on the state of the art of brain-computer interfaces (or BCIs) and see how our understanding had advanced since I wrote the Brain interface chapter in the book, back in the halcyon days of 2012.

Note that I am deliberately avoiding the tech side of this question. I’m not going to talk about EEG, PET, MRI, and fMRI. (Though they’re linked in case you want to learn more.) Modern brain-computer interface (or BCI) technologies are evolving too rapidly to bother with an overview of them. They’ll change in the real world by the time I press “publish,” much less by the time you read this. And sci-fi tech is most often a black box anyway. But the human part of the human-computer interaction model changes much more slowly. We can look to the brain as a relatively-unalterable component of the BCI question, leading us to two believability questions of sci-fi BCI.

  1. How can people express intent using their brains?
  2. How do we prevent accidental activation using BCI?

Let’s discuss each.

1. How can people express intent using their brains?

In the see-think-do loop of human-computer interaction…

  • See (perceive) has been a subject of visual, industrial, and auditory design.
  • Think has been a matter of human cognition as informed by system interaction and content design.
  • Do has long been a matter of some muscular movement that the system can detect, to start its matching input-process-output loop. Tap a button. Move a mouse. Touch a screen. Focus on something with your eyes. Hold your breath. These are all ways of “doing” with muscles.
The “bowtie” diagram I developed for my book on agentive tech.

But the first promise of BCI is to let that doing part happen with your brain. The brain isn’t a muscle, so what actions are BCI users able to take in their heads to signal to a BCI system what they want it to do? The answer to this question is partly physiological, about the way the brain changes as it goes about its thinking business.

Ah, the 1800s. Such good art. Such bad science.

Our brains are a dense network of bioelectric signals, chemicals, and blood flow. But it’s not chaos. It’s organized. It’s locally functionalized, meaning that certain parts of the brain are predictably activated when we think about certain things. But it’s not like the Christmas lights in Stranger Things, with one part lighting up discretely at a time. It’s more like an animated proportional symbol map, with lots of places lighting up at the same time to different degrees.

Illustrative composite of a gif and an online map demo.

The sizes and shapes of what’s lighting up may change slightly between people, but a basic map of healthy, undamaged brains will be similar to each other. Lots of work has gone on to map these functional areas, with researchers showing subjects lots of stimuli and noting what areas of the brain light up. Test enough of these subjects and you can build a pretty good functional map of concepts. Thereafter, you can take a “picture” of the brain, and you can cross-reference your maps to reverse-engineer what is being thought.

From Jack Gallant’s semantic maps viewer.

Right now those pictures are pretty crude and slow, but so were the first actual photographs in the world. In 20–50 years, we may be able to wear baseball caps that provide a much more high-resolution, real time inputs of concepts being thought. In the far future (or, say, the alternate history of the MCU) it is conceivable to read these things from a distance. (Though there are significant ethical questions involved in such a technology, this post is focused on questions of viability and interaction.)

From Jack Gallant’s semantic map viewer

Similarly the brain maps we have are only for a small percentage of an average adult vocabulary. Jack Gallant’s semantic map viewer (pictured and linked above) shows the maps for about 140 concepts, and estimates of average active vocabulary is around 20,000 words, so we’re looking at a tenth of a tenth of what we can imagine (not even counting the infinite composability of language). But in the future we will not only have more concepts mapped, more confidently, but we will also have idiographs for each individual, like the personal dictionary in your smart phone.

All this is to say that our extant real world technology confirms that thoughts are a believable input for a system. This includes linguistic inputs like “Turn on the light” and “activate the vibranium sand table” and “Sincerely, Chris” and even imagining the desired change, like a light changing from dark to light. It might even include subconscious thoughts that yet to be formed into words.

2. How do we prevent accidental activation?

But we know from personal experience, we don’t want all our thoughts to be acted on. Take, for example, those thoughts you’re feeling hangry, or snarky, or dealing with a jerk-in-authority. Or those texts and emails that you’ve composed in the heat of the moment but wisely deleted before they get you in trouble.

If a speculative BCI is being read by a general artificial intelligence, it can manage that just like a smart human partner would.

He is composing a blog post, reasons the AGI, so I will just disregard his thought that he needs to pee.

And if there’s any doubt, an AGI can ask. “Did you intend me to include the bit about pee in the post?” Me: “Certainly not. Also BRB.” (Readers following the Black Panther reviews will note that AGI is available to Wakandans in the form of Griot.)

If AGI is unavailable to the diegesis (and it would significantly change any diegesis of which it is a part) then we need some way to indicate when a thought is intended as input and when it isn’t. Having that be some mode of thought feels complicated and error-prone, like when programmers have to write regex expressions that escape escape characters. Better I think is to use some secondary channel, like a bodily interaction. Touch forefinger and pinky together, for instance, and the computer understands you intend your thoughts as input.

So, for any BCI that appears in sci-fi, we would want to look for the presence or absence of AGI as a reasonableness interpreter, and, barring that, for some alternate-channel mechanism for indicating deliberateness. We would also hope to see some feedback and correction loops to understand the nuances of the edge-case interactions, but these are rare in sci-fi.

Even more future-full

This all points to the question of what seeing/perceiving via a BCI might be. A simple example might be a disembodied voice that only the user can hear.

A woman walks alone at night. Lost in thoughts, she hears her AI whisper to her thoughts, “Ada, be aware that a man has just left a shadowy doorstep and is following, half a block behind you. Shall I initialize your shock shoes?”

What other than language can be written to the brain in the far future? Images? Movies? Ideas? A suspicion? A compulsion? A hunch? How will people know what are their own thoughts and what has been placed there from the outside? I look forward to the stories and shows that illustrate new ideas, and warn us of the dark pitfalls.

3 thoughts on “UX of Speculative Brain-Computer Inputs

  1. I was really fascinated with the way „Eternal Sunshine for a Spotless Mind“ handled the recognition of using a BCI. Besides showing projections of the tech support, they also demonstrated how real time changed to the users brain could be recognized with weird glitches and horrific experiences.

    • It really was a great movie, and way ahead of its time in a lot of ways. Though I wonder about the glitches. Like, our brains excel at smoothing over our own contradictions and “repairing” broken memories. Why wouldn’t it do the same for implanted or removed memories?

      • Magnitude of the changes? Our normal process of memories fading and being consolidated seems to be very gradual step by step. Here the brain has to cope with some very heavy handed editing / damage.

Leave a Reply